铁路平板车装货问题(用Lingo求解)

本文介绍如何使用Lingo优化算法解决实际问题,通过合理安排七种不同规格的包装箱(C1-C7)到两节铁路平板车上,满足载重、长度和空间限制,目标是减少空间浪费。特别关注C5、C6、C7类包装箱的空间总和不超过302.7cm的约束。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

铁路平板车装货问题(用Lingo求解)

有七种规格的包装箱要装到两节铁路平板车上去。包装箱的宽和高是一样的,厚度(t,cm 计)及重量(w,kg计)不同。表1给出了包装箱的厚度、重量以及数量。每节平板车有10.2m 长的地方可装包装箱,载重为40t。由于当地货运的限制,对于C5, C6, C7 类包装箱的总数有一个特别限制:箱子所占的空间(厚度)不能超过302.7cm。试把包装箱装到平板车上,使得浪费空间最小。

种类

C1

C2

C3

C4

C5

C

C7

t/cm

48.7

53.0

61.3

72.0

48.7

52.0

64.0

w/kg

2000

3000

1000

500

4000

2000

1000

n/

8

7

9

6

6

4

8

model:
sets:
A/n1..n7/:T,W,N;
B/1,2/;
links(A,B):X;
endsets
max=@sum(A(i):@sum(B(j):X(i,j)*T(i)));
@for(B(j):@sum(A(i):X(i,j)*T(i))<=1020);
@sum(B(j):@sum(A(i)|i#ge#5:X(i,j)*T(i)))<=302.7;
@for(B(j):@sum(A(i):X(i,j)*W(i))<=40000);
@for(A(i):@sum(B(j):X(i,j))<=N(i));
@for(links:@gin(X));
data:
T=48.7 53 61.3 72 48.7 52 64;
W=2000 3000 1000 500 4000 2000 1000;
N=8 7 9 6 6 4 8;
enddata
end


                       Variable           Value        Reduced Cost
                         T( N1)        48.70000            0.000000
                         T( N2)        53.00000            0.000000
                         T( N3)        61.30000            0.000000
                         T( N4)        72.00000            0.000000
                         T( N5)        48.70000            0.000000
                         T( N6)        52.00000            0.000000
                         T( N7)        64.00000            0.000000
                         W( N1)        2000.000            0.000000
                         W( N2)        3000.000            0.000000
                         W( N3)        1000.000            0.000000
                         W( N4)        500.0000            0.000000
                         W( N5)        4000.000            0.000000
                         W( N6)        2000.000            0.000000
                         W( N7)        1000.000            0.000000
                         N( N1)        8.000000            0.000000
                         N( N2)        7.000000            0.000000
                         N( N3)        9.000000            0.000000
                         N( N4)        6.000000            0.000000
                         N( N5)        6.000000            0.000000
                         N( N6)        4.000000            0.000000
                         N( N7)        8.000000            0.000000
                      X( N1, 1)        5.000000           -48.70000
                      X( N1, 2)        3.000000           -48.70000
                      X( N2, 1)        2.000000           -53.00000
                      X( N2, 2)        5.000000           -53.00000
                      X( N3, 1)        7.000000           -61.30000
                      X( N3, 2)        2.000000           -61.30000
                      X( N4, 1)        2.000000           -72.00000
                      X( N4, 2)        4.000000           -72.00000
                      X( N5, 1)        2.000000           -48.70000
                      X( N5, 2)        3.000000           -48.70000
                      X( N6, 1)        0.000000           -52.00000
                      X( N6, 2)        1.000000           -52.00000
                      X( N7, 1)        0.000000           -64.00000
                      X( N7, 2)        0.000000           -64.00000

点击以下检验

 检验符合

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十年后一起潇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值