铁路平板车装货问题(用Lingo求解)
有七种规格的包装箱要装到两节铁路平板车上去。包装箱的宽和高是一样的,厚度(t,cm 计)及重量(w,kg计)不同。表1给出了包装箱的厚度、重量以及数量。每节平板车有10.2m 长的地方可装包装箱,载重为40t。由于当地货运的限制,对于C5, C6, C7 类包装箱的总数有一个特别限制:箱子所占的空间(厚度)不能超过302.7cm。试把包装箱装到平板车上,使得浪费空间最小。
种类 | C1 | C2 | C3 | C4 | C5 | C6 | C7 |
t/cm | 48.7 | 53.0 | 61.3 | 72.0 | 48.7 | 52.0 | 64.0 |
w/kg | 2000 | 3000 | 1000 | 500 | 4000 | 2000 | 1000 |
n/件 | 8 | 7 | 9 | 6 | 6 | 4 | 8 |
model:
sets:
A/n1..n7/:T,W,N;
B/1,2/;
links(A,B):X;
endsets
max=@sum(A(i):@sum(B(j):X(i,j)*T(i)));
@for(B(j):@sum(A(i):X(i,j)*T(i))<=1020);
@sum(B(j):@sum(A(i)|i#ge#5:X(i,j)*T(i)))<=302.7;
@for(B(j):@sum(A(i):X(i,j)*W(i))<=40000);
@for(A(i):@sum(B(j):X(i,j))<=N(i));
@for(links:@gin(X));
data:
T=48.7 53 61.3 72 48.7 52 64;
W=2000 3000 1000 500 4000 2000 1000;
N=8 7 9 6 6 4 8;
enddata
end
Variable Value Reduced Cost
T( N1) 48.70000 0.000000
T( N2) 53.00000 0.000000
T( N3) 61.30000 0.000000
T( N4) 72.00000 0.000000
T( N5) 48.70000 0.000000
T( N6) 52.00000 0.000000
T( N7) 64.00000 0.000000
W( N1) 2000.000 0.000000
W( N2) 3000.000 0.000000
W( N3) 1000.000 0.000000
W( N4) 500.0000 0.000000
W( N5) 4000.000 0.000000
W( N6) 2000.000 0.000000
W( N7) 1000.000 0.000000
N( N1) 8.000000 0.000000
N( N2) 7.000000 0.000000
N( N3) 9.000000 0.000000
N( N4) 6.000000 0.000000
N( N5) 6.000000 0.000000
N( N6) 4.000000 0.000000
N( N7) 8.000000 0.000000
X( N1, 1) 5.000000 -48.70000
X( N1, 2) 3.000000 -48.70000
X( N2, 1) 2.000000 -53.00000
X( N2, 2) 5.000000 -53.00000
X( N3, 1) 7.000000 -61.30000
X( N3, 2) 2.000000 -61.30000
X( N4, 1) 2.000000 -72.00000
X( N4, 2) 4.000000 -72.00000
X( N5, 1) 2.000000 -48.70000
X( N5, 2) 3.000000 -48.70000
X( N6, 1) 0.000000 -52.00000
X( N6, 2) 1.000000 -52.00000
X( N7, 1) 0.000000 -64.00000
X( N7, 2) 0.000000 -64.00000
点击以下检验
检验符合