高等数学知识总结

因为某些算法题和数学有着密不可分的联系,因此,我决定将我大一这一年来学的高等数学做一个全面的总结,有些知识已经记得不算太清,如果有错误的地方还请大佬及时指出。
第一章:函数、极限与连续

第1节:初等函数

这一节就是高中的一些基本初等函数的的复习,补充几个不是高中的知识。
(1)差集:A\B={x|x属于A且x不属于B(属于号不会打,捂脸)},同理B\A与之相反。B\A读作B插A(别想多了)
(2)笛卡尔乘积:任意集合A和集合B中所有二原有序组(x,y)构成的集合,记作AB(其实是数学中的乘号,这里用来代替)
AB={(x,y)|x属于A,y属于B},有这个知识点可以延伸出二维坐标系上所有点可以用R * R来表示,空间中的所有点可以用R * R * R来表示。
(3)邻域:大道理就不说了,直接举个例子,求点2的0.2领域,记作u(2,0.2),结果为u(2,0.2)=(1.8,2.2);(这个知识可能会在算法中出现)邻域是一个集合,而不是一个数,由上面的例子你也就知道怎么算邻域。
(4)函数的简单性质我就不说了吧,单调性,周期性,奇偶性,周期性等。这些都是高中学的,也是很基础的没什么好讲的。除此之外还有一个有界性:这个我说一下,大道理不说了,说点注意事项,若f(x)在定义域内有界,则称f(x)为有界函数,若f(x)在某个区间U上有界,则称f(x)在U上有界。
(5)复合函数我也就不说了,重点说一下反函数,首先你要知道只有一 一对应的函数具有反函数。其次反函数的定义是因变量与自变量的交换,交换之后得到的函数是原函数的反函数。通常y=f(x)的反函数也记为x=f^(-1)(y),(为方便理解,我翻译一下,x等于f(y)的负一次方)。
(6)初等函数:这里我就说3个函数余切函数y=cotx(cotx等于1/tanx),正割函数y=secx(secx等于1/cosx),和余割函数y=cscx(cscx等于1/sinx),这个遇到算法题的话,我觉得题上应该会提前告诉你这些,如果没告诉你的话你也要知道。还有一个就是三角函数中的积化和差公式:
公式1:sinxsiny = -1/2
(cos(x+y)-cos(x-y));
公式2:cosxcosy = 1/2(cos(x+y)+cos(x-y));
公式3:sinxcosy = 1/2(sin(x+y)+sin(x-y));
公式4:cosxsiny = 1/2*(sin(x+y)-sin(x-y));
对上面的公式一定要有自己的记忆方法,不反对死记硬背,但最好别那样做。
第2节:数列的极限

(1)数列的极限:若{an}是一个数列,b是一个常数,当n越来越大的时候an越来越接近与b,则称b为{an}的极限。其实这也都是在高中都学过,没啥好说的。
(2)数列极限的性质:
1.唯一性:任何收敛数列{xn}的极限都是唯一的。说白了就是数列极限都只有一个值,不会有多个。
2.有界性:这个是针对于收敛数列,如果数列{xn}收敛,则数列{xn}一定有界,若数列{xn}收敛于a,则它的任一子数列{xnk}也收敛,且极限也是a。
3.若数列{an}的奇子数列{a2k-1(2k-1是下标后面也同理)},和偶子数列{a2*k}均收敛于同一常数b时,则数列{an}也收敛于b,这是判断一个数列是否收敛的充分必要条件。
第3节:函数的极限

(1)x->无穷,或x->X0,时函数的极限:
我就说一点,其他的都是高中所学就不再说了,一个函数在某点有无极限与在该点有无意义无关,说白了就是函数在某一点处没有意义,但在这一点出却可能会有极限的存在。
(2)左右极限定理:若f(x)当x趋于x0时极限等于A,他等价于x从x0的左边趋近x0(左极限)等于A同时也等价于x从x0的右边趋近与x0(右极限)也等于A。
适用范围为:
1.主要用于分段函数再分断点处,且在分段点处,左右两侧的表达式不同时的极限。
2.主要用于含有绝对值(或开偶次方根)的函数在绝对值为零处的极限。
3.主要用于含有1/e^x, 1/a^x, arctan1/x,的函数在x->0的极限。
第4节:无穷大与无穷小

(1)无穷小:1.极限为零的变量称为无穷小量,2.无穷小是一个变量(函数),无论绝对值多么小的数都不是无穷小,但“0”是唯一可以作为无穷小的数。,3.无穷小是相对自变量的某一变化过程而言的。
(2)无穷小与函数极限的关系:若f(x)当x趋于x0的时候极限为A,的充分必要条件是f(x)=A+a(x);其中当x趋于x0是a(x)的极限等于0 。
(3)无穷大:绝对值无限增大的变量,跟无穷小一样无穷大也是一个变量。
总结:正无穷,负无穷都属于极限不存在,另外无穷大一定是无界函数,但无界函数不一定是无穷大。所谓的无穷大与无穷小,是指在自变量的某种变化趋势下,函数f(x)的绝对值无限增大或者无限变小。
第5节:极限的运算法则

(1)有限个无穷小的和是无穷小,有限个无穷小的乘积也是无穷小。
(2)有界函数与无穷小的乘积是无穷小。
(3)常数与无穷小的乘积是无穷小。
(4)极限的四则运算法则的注意事项:参加运算的是有限个函数,且他们的极限都存在,没有极限或者极限不存在,不能进行四则运算,商的极限要求分母的极限不为0,无穷大不要随意参加运算,因为无穷大不是一个数。
(5)求极限的几种常见的方法:
1. 直接代入法。
2. 如果遇到A/0型,就是分子的极限为一个不为零的常数,而分母的极限为0,这种一看他的极限就是无穷大。
3. 0/0型的求极限方法,因式分解消零因子,如果含有根式的话就分子,分母有理化。
4. 无穷/无穷型:谁大除以谁(这个大是指x的次方的大小),例:在这里插入图片描述
5. 无穷减无穷型:通分化为0/0,或者无穷/无穷。例:
在这里插入图片描述第6节:两个重要的极限

(1)两个重要极限:1. sinx/x,当x趋于0时的极限等于1,形如sinw(x)/w(x)的形式,当x趋于任意值只要w(x)趋于0则sinw(x)/w(x)的极限都为1;2. (1+1/x)^x当x->无穷时极限为e,推广形式是 (1+1/w(x) )^ w(x)当x->任意值只要1/w(x)的极限为零,则此式的极限就为e。
第7节:无穷小的比较

(1)设a(x),b(x)当x->x0(或x->无穷)是都是无穷小;
1.若limb(x)/a(x)=0,则称b(x)是比a(x)高阶的无穷小;
2.若limb(x)/a(x)=无穷,则称b(x)是比a(x)低阶的无穷小;
3.若limb(x)/a(x)=C!=0,则称a(x)和b(x)是同阶无穷小;
4.若limb(x)/a(x)^k = C!=0,k>0,则称b(x)是关于a(x)的k阶无穷小;
5.若limb(x)/a(x)=1,则称a(x)和b(x)是等价无穷小,记作a(x)~b(x),显然等价无穷小也属于同阶无穷小;
(2)常见的几个等价无穷小的代换:
以下几个式子成立的前提是x->0,并且这几个式子还是比较重要的,因此我用红色的标记了它,
sinx~x,arcsinx ~ x, tanx ~ x,arctanx ~ x,ln(1+x) ~x, e^x-1 ~ x ,a ^x-1 ~xlna, 1- cosx ~ 1/2x ^2, (n次根号下(1+x ^k)然后再减去1 ~1/nx ^k;

第8节函数的连续性

(1)定义1:设函数y=f(x)在点x0的某一领域内有定义,如果当(x2-x1)->0,lim(y2-y1)=0,则称函数f(x)在点x0处连续,此定理主要用于理论证明(抽象函数)可导和连续,或考察一个具体函数在非具体点的连续。
(2)设函数y=f(x)在点x0的某一领域内有定义,如果当x->x0,limf(x)=f(x0),则称函数f(x)在点x0处连续。
(3)若f(x)在点x0处连续的充分必要条件是它在x0点处既左连续又右连续,此定理主要用于判断分段函数在分段点处的连续性。
(4)函数的间断点:
1.求法:初等函数的间断点常出现在分母为0处或者真数为零处,但函数在这些点左右邻近处必须有定义;
2.分段函数的间断点常出现在分界点处;
分类:1.第一类间断点f(x0-0)及f(x0+0)均存在(在x0处的左极限与右极限都存在),若f(x0-0)=f(x0+0),则称x=x0为可去间断点;若f(x0-0)!=f(x0+0),则称x=x0为跳跃间断点;2.第二类间断点:f(x0-0)或f(x0+0)至少有一个不存在,若其中一个为无穷大则称x=x0为无穷间断点;若其中有震荡称x=x0为震荡间断点。
例题:在这里插入图片描述(5)反函数与复合函数的连续性
1.反函数的连续性:若y=f(x)在区间Ix上连续且单调增加(或减少)则其反函数x=w(y)在对应区间上也单调增加或减少,例y=sinx在闭区间(-π/2,π/2)上连续且单调增加,则他的反函数y=arcsinx在闭区间(-1,1)也是单调增加且连续。
2.复合函数的连续性:内层函数的极限存在,外层函数在该极限点连续则求复合函数的极限时可将极限号移到内层函数中,现求内层函数的极限。
3.一切初等函数在定义区间内都是连续的(定义区间是指包含在定义域内的区间)。
例题:在这里插入图片描述
第9节闭区间连续函数的性质

(1)(最大值最小值定理)若函数f(x)在闭区间(a,b)上连续,则f(x)在闭区间(a,b)上一定能取得最大值和最小值。
(2)证明方程恰有一根或只有一根结合单调性与零点存在定理,例:在这里插入图片描述第二章导数与微分
第1节导数的概念

(1)左导数与右导数(与左极限与右极限的适用范围一样)函数在x0点处可导的充分必要条件是函数在x0点的左导数与右导数均存在并且相等。
(2)可导一定连续(逆否命题:不连续一定不可导)因此再求一个函数的连续与可导性时,首先应该判断连续性,在判断可导性,因为不连续一定不可导。
第3节复合函数的求导法则

(3)复合函数的求导法则:由外向内依次求导。
未完待续…

  • 2
    点赞
  • 30
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值