Spark 累加器

累加器

累加器:分布式共享只写变量。(Executor和Executor之间不能读数据)
累加器用来把Executor端变量信息聚合到Driver端。在Driver中定义的一个变量,在Executor端的每个task都会得到这个变量的一份新的副本,每个task更新这些副本的值后,传回Driver端进行合并计算。

在这里插入图片描述

系统累加器

1)累加器使用
(1)累加器定义(SparkContext.accumulator(initialValue)方法)
val sum: LongAccumulator = sc.longAccumulator(“sum”)
(2)累加器添加数据(累加器.add方法)
sum.add(count)
(3)累加器获取数据(累加器.value)
sum.value
2)创建包名
3)代码实现

object accumulator01_system {

    def main(args: Array[String]): Unit = {

        //1.创建SparkConf并设置App名称
        val conf: SparkConf = 
        new SparkConf().setAppName("SparkCoreTest").setMaster("local[1]")

        //2.创建SparkContext,该对象是提交Spark App的入口
        val sc: SparkContext = new SparkContext(conf)

        //3.创建RDD
        val dataRDD: RDD[(String, Int)] = 
        sc.makeRDD(List(("a", 1), ("a", 2), ("a", 3), ("a", 4)))

        //3.1 打印单词出现的次数(a,10) 代码执行了shuffle,效率比较低
        dataRDD.reduceByKey(_ + _).collect().foreach(println)

        //3.2 如果不用shuffle,怎么处理呢?
        var sum = 0
        // 打印是在Executor端
        dataRDD.foreach {
            case (a, count) => {
                sum = sum + count
                println("sum=" + sum)
            }
        }
        // 打印是在Driver端
        println(("a", sum))

        //3.3 使用累加器实现数据的聚合功能
        // Spark自带常用的累加器
        //3.3.1 声明累加器
        val sum1: LongAccumulator = sc.longAccumulator("sum1")

        dataRDD.foreach{
            case (a, count)=>{
                //3.3.2 使用累加器
                sum1.add(count)

                //3.3.3 不在Executor端读取累加器的值
                //println(sum1.value)
            }
        }
        //3.3.4 获取累加器
        println(sum1.value)

        //4.关闭连接
        sc.stop()
    }
   }

注意:Executor端的任务不能读取累加器的值(例如:在Executor端调用sum.value,获取的值不是累加器最终的值)。因此我们说,累加器是一个分布式共享只写变量

3)累加器要放在行动算子中
因为转换算子执行的次数取决于job的数量,如果一个spark应用有多个行动算子,那么转换算子中的累加器可能会发生不止一次更新,导致结果错误。所以,如果想要一个无论在失败还是重复计算时都绝对可靠的累加器,我们必须把它放在foreach()这样的行动算子中。
对于在行动算子中使用的累加器,Spark只会把每个Job对各累加器的修改应用一次。

object accumulator02_updateCount {

    def main(args: Array[String]): Unit = {

        //1.创建SparkConf并设置App名称
        val conf: SparkConf = 
        new SparkConf().setAppName("SparkCoreTest").setMaster("local[*]")

        //2.创建SparkContext,该对象是提交Spark App的入口
        val sc: SparkContext = new SparkContext(conf)

        //3.创建RDD
        val dataRDD: RDD[(String, Int)] = 
        sc.makeRDD(List(("a", 1), ("a", 2), ("a", 3), ("a", 4)))

        //3.1 定义累加器
        val sum: LongAccumulator = sc.longAccumulator("sum")

        val value: RDD[(String, Int)] = dataRDD.map(t => {
            //3.2 累加器添加数据
            sum.add(1)
            t
        })

        //3.3 调用两次行动算子,map执行两次,导致最终累加器的值翻倍
        value.foreach(println)
        value.collect()

        //3.4 获取累加器的值
        println("a:"+sum.value)

        //4.关闭连接
        sc.stop()
    }
}

自定义累加器

自定义累加器类型的功能在1.X版本中就已经提供了,但是使用起来比较麻烦,在2.0版本后,累加器的易用性有了较大的改进,而且官方还提供了一个新的抽象类:AccumulatorV2来提供更加友好的自定义类型累加器的实现方式。
1)自定义累加器步骤
(1)继承AccumulatorV2,设定输入、输出泛型
(2)重写方法
2)需求:自定义累加器,统计RDD中首字母为“H”的单词以及出现的次数。
List(“Hello”, “Hello”, “Hello”, “Hello”, “Hello”, “Spark”, “Spark”)
在这里插入图片描述
3)代码实现

import org.apache.spark.rdd.RDD
import org.apache.spark.util.AccumulatorV2
import org.apache.spark.{SparkConf, SparkContext}

import scala.collection.mutable

object accumulator03_define {

    def main(args: Array[String]): Unit = {

        //1.创建SparkConf并设置App名称
        val conf: SparkConf = 
        new SparkConf().setAppName("SparkCoreTest").setMaster("local[*]")

        //2.创建SparkContext,该对象是提交Spark App的入口
        val sc: SparkContext = new SparkContext(conf)

        //3. 创建RDD
        val rdd: RDD[String] = 
        sc.makeRDD(List("Hello", "Hello", "Hello", "Hello", "Spark", "Spark"), 2)

        //3.1 创建累加器
        val acc: MyAccumulator = new MyAccumulator()

        //3.2 注册累加器
        sc.register(acc,"wordcount")

        //3.3 使用累加器
        rdd.foreach(
            word =>{
                acc.add(word)
            }
        )

        //3.4 获取累加器的累加结果
        println(acc.value)

        //4.关闭连接
        sc.stop()
    }
}

// 声明累加器
// 1.继承AccumulatorV2,设定输入、输出泛型
// 2.重新方法
class MyAccumulator extends AccumulatorV2[String, mutable.Map[String, Long]] {

    // 定义输出数据集合
    var map = mutable.Map[String, Long]()

    // 是否为初始化状态,如果集合数据为空,即为初始化状态
    override def isZero: Boolean = map.isEmpty

    // 复制累加器
    override def copy(): AccumulatorV2[String, mutable.Map[String, Long]] = {
        new MyAccumulator()
    }

    // 重置累加器
    override def reset(): Unit = map.clear()

    // 增加数据
    override def add(v: String): Unit = {
        // 业务逻辑
        if (v.startsWith("H")) {
            map(v) = map.getOrElse(v, 0L) + 1L
        }
    }

    // 合并累加器
    override def merge(other: AccumulatorV2[String, mutable.Map[String, Long]]): Unit = {

        other.value.foreach{
            case (word, count) =>{
                map(word) = map.getOrElse(word, 0L) + count
            }
        }
    }

    // 累加器的值,其实就是累加器的返回结果
    override def value: mutable.Map[String, Long] = map
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值