《SAFE: Scale-Adaptive Fitness Evaluation Method for Expensive Optimization Problems》笔记

本文提出了一种名为SAFE的新型算法,针对昂贵目标函数的优化问题,通过代理模型管理和多精度评估,解决了众包配送调度中的高计算成本。文章重点介绍了一种尺度自适应的适应度评估方法,以及在CVRP-OC问题中的应用,包括单向和双向EM切换策略以及NBE策略,以提升计算效率和解的质量平衡。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 代理模型方法

  进化计算(Evolutionary Computation, EC)算法是受自然界进化现象和群智能的启发而发展起来的一种基于种群的优化求解工具。由于EC算法的简单性和不需要梯度信息,在过去的几十年里已经发展出了多种进化算法并被广泛应用于解决各种优化问题。EC算法从可行解(个体)的初始种群开始,通过复制操作(如交叉和变异)迭代生成新的解(后代)。然后通过基于适应度评估(Fitness Evaluation, FE)的挑选,具有更好适应度值的个体有更大的机会生存到下一代,从而传播高质量的解。因此FE是推动EC算法接近最优解的一个重要过程。(适应度函数取决于目标函数,但也有区别。目标函数与问题本身有关,即优化目标,而适应度函数与算法设计有关,适应度函数被设计用于帮助选择操作。)如果优化问题的目标函数非常明确且适应度函数设计得很好,那么EC算法就可以很好地工作。然而许多实际问题的典型特征是NP-hard、随机性和高计算成本,这意味着FE可能是不确定的和计算昂贵的。因此如何为实际昂贵优化问题(Expensive Optimization Problem, EOP)建立一个合适的适应度函数是非常困难的。
  为了有效地利用EC算法求解EOP,文献中广泛使用的方法是通过代理模型代替原始昂贵目标函数,从而建立一个代价低廉的适应度函数。代理方法可分为两类:1)数据驱动方法;2)知识驱动方法。数据驱动方法旨在基于收集到的历史数据构建一个代理模型,使其作为一种更便宜的适应度函数来取代原始昂贵目标函数。知识驱动方法是由领域专家提出的,通过基于知识嵌入数学模型的数值模拟,将原始目标函数简化为一个成本较低的适应度函数。上述两种方法的基本思想都是寻找一种代价较低的逼近模型来替代原始昂贵目标函数。然而无论是数据驱动的方法还是知识驱动的方法,它们或多或少地使被替换/简化的廉价适应度函数在某种程度上不同于现实问题的原始目标函数。这将不可避免地带来模型误差,对实际应用不利。为了减少单个低保真度代理的模型误差,提出了使用多个代理和多保真度代理的方法来平衡计算成本和精度,这在一定程度上降低了模型误差。但是用代理模型近似得到的适应度函数需要大量的数据和训练。此外构建的代理可能只对优化过程有意义,但在实际应用中可能不像原始目标函数一样具有实际意义。也就是说由于代理模型的误差,在代理适应度函数中表现良好的解在实际问题中不一定能很好地工作。
  为了弥补真实问题的昂贵目标函数与EC算法的适应度评估之间的差距,本文提出了一种尺度自适应适应度评估(Scale-Adaptive Fitness Evaluation, SAFE)方法,使EC算法能够直接在原始目标函数上高效地求解EOP问题。本文提出的SAFE方法与基于代理的方法在求解EOP的主要区别如图1所示。在图1左边的方法中,主要的贡献位于真实目标函数和廉价适应度函数之间,其中提出了大量的代理模型方法。而我们的工作集中在图1的右侧,其主要贡献位于适应度函数和算法之间,其中提出了SAFE方法来驱动EC算法有效地处理原始昂贵适应度函数。

  SAFE方法是一组具有不同精度尺度的不同评估方法(Evaluation Methods, EM)协同工作并自适应协作以完成FE过程的通用框架。在使用SAFE时,适应度函数可以与原目标函数相同或无显著差异,但在不同的进化阶段,不同的EMs可以在不同的精度尺度上评估解的适应度值,以降低计算成本。值得注意的是,基于多保真度代理的方法在平衡解的精度和计算开销方面与SAFE方法有相似之处。然而它们的主要的区别在于,大多数基于多保真度代理的方法主要只考虑一种EM,并通过控制该EM的仿真参数(如最大迭代次数)来控制评估保真度,而SAFE方法采用不同精度尺度的异构EM来完成FE。因此SAFE方法是一个更一般的框架,不仅EM本身可以被控制,而且不同的EM可以相互协作。
  主要贡献

  • 不同于以往的研究通常会改变EOP问题的目标函数,我们提出的SAFE方法在不同的精度尺度上管理一组异构的EMs,直接对原始目标函数作为适应度函数进行评估;
  • 为了充分利用各种EMs,不同EMs之间的切换被设计成一种inter-EM(即不同EMs之间)管理,包括单向和双向EM切换策略。这有助于根据不同进化阶段的搜索需求自适应地切换到合适的EM。
  • 为了进一步帮助SAFE方法,提出了一种基于邻居最优评估(NBE)策略,充分利用高质量的解进一步降低计算成本。由于NBE策略是在特定EM的解上执行的,我们将其称为intra-EM(即EM内)改进。

2 众包配送调度问题

2.1 问题表示

  众包配送(Crowdshipping)是当前物流系统的新趋势。在此模式下,物流公司不仅雇佣了一个专业车队(PF),还吸引普通的闲散人群作为临时快递员(OC),协同完成配送任务。作为回报,公司会向OC支付一小笔报酬。众包配送问题的目标是使PF产生的总配送成本和支付给OC的报酬最小化。
  众包配送计划不仅包括任务分配,确定哪个客户应该由PF或OC服务,还包括PF的路径规划。具体来说,工作流是从与客户位置和需求(例如货物重量)等信息相关的待服务订单(客户)到达时开始的。调度程序需要决定哪些订单应该由PF或OC完成。一旦做出决策,即任务分配,OC的客户就会被释放,成本就可以计算出来。剩余的客户将由PF服务,PF根据给定订单的路径规划从仓库出发,其总成本应尽可能小。当所有客户满意时,PF将返回仓库。此外,PF内车辆的负荷不能超过其承载能力。
  由于SAFE方法使用与目标函数相同的适应度函数,因此需要规划PF的路径以获得总成本。获取PF的路径规划是一个优化问题,即众所周知的有能力约束的车辆路径调度问题 (Capacitated Vehicle Routing Problem, CVRP)。由于CVRP具有NP-hard的特点,用现有的精确求解方法求得最优解既耗时又计算量大,因此文献中提出了许多非精确算法,如贪心算法、变邻域搜索(VNS)和ACS,本文将这些求解器作为不同的EMs来处理。通常,基于搜索能力和计算成本可以将它们划分为不同的精度尺度。具体来说,精度越高的求解器往往得到的解越好,但耗时越长。此外还可以控制求解器的参数(如最大迭代次数),形成更多具有不同精度尺度的求解器。因此显然需要在解的质量和计算成本之间取得平衡。为此本文提出利用SAFE方法有效地解决众包配送调度问题,可能会对智慧城市智能物流系统的发展具有一定的借鉴意义。
  基于著名的CVRP模型,将众包配送调度系统的问题建模为CVRP-OC。CVRP-OC定义在完全无向图 G = ( C U S , E D G ) G = (CUS, EDG) G=(CUS,EDG)上。其中: N N N为客户数量, C U S = { c 0 , c 1 , … , c N } CUS = \{c_0, c_1, …, c_N\} CUS={ c0,c1,,cN}是包含 N + 1 N + 1 N+1个元素的客户节点集合。 c 0 c_0 c0是PF中所有车辆离开并最终返回的仓库。每个客户都与一个需求相关联,这个需求构成了 D e m a n d = { d i ∣ 0 ≤ i ≤ N } Demand = \{d_i |0≤i≤N\} Demand={ di0iN}。其中仓库的需求 d 0 d_0 d0为零。所有PF车型都有相同的最大负载限制,称为 C a p a c i t y Capacity Capacity。在这里,由于许多空闲的快递员构成了一个整体,因此OC的容量被假设为无限。每一对客户的组合构成一个边集 E D G = { ( i , j ) ∣ 0 ≤ i ≠ j ≤ N } EDG= \{(i, j)|0≤i≠j≤N\} EDG={ (i,j)0i=jN}。每条边都与一个称为 C o s t = { w i j ∣ 0 ≤ i ≠ j ≤ N } Cost= \{w_{ij}|0≤i≠j≤N\} Cost={ wij0i

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

-Sussurro-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值