带有负权边的单源最短路径(Bellman-Ford算法)

当一张图中存在负权边时,Dijstra算法就无法算出正确的解,这个时候我们要用到Bellman-Ford算法。
注意:
1 当这张图存在负权环时是无法算出最短路径的,也可以用Bellman-Ford算法判断这张图是否有负权环。
2 Bellman-Ford算法一般处理的是有向图,因为如果是无向图,那么如果存在一条负权边,就会构成负权环了
复杂度: 邻接表表示图时O(VE),邻接矩阵表示时O(V^3)
算法原理:
如果一个图没有负权环,那么从一点到另一个点的最短路径最多经过所有的V个顶点,经过V-1条边
对一个点的一次松弛操作,就是找到经过这个点到与其相邻的点的另外一条路径,多一条边,而权值更小。那么我们只要对所有的点进行V-1次松弛操作,就可以求出从起点开始对任意一点的距离。如果还可以进行松弛操作,那么说明这个图有负权环。
(虽然说是对i点进行松弛操作,但实际上是对i直接相邻的点进行改变的)
算法步骤:
用dist数组存放从起点开始到第i个点的距离
v-1次循环,每次循环对所有点进行松弛操作。(当某一次循环任何一个点都没有成功松弛时,算法结束),因为如果本次循环没有点可以进行松弛,那么下一次的循环与这一次的将会一模一样,也不会有点可以进行松弛,直至n-1次循环后结束。
也就是说:只有上一次循环中松弛过的点才有可能参与下一次循环的松弛操作!!!(这个将是spfa提出的依据)
具体代码:

#include <iostream>
#include <vector>
#define maxn 10
#define INF 0x7fffffff
using namespace std;

int dist[maxn];

struct node{  
	int val;
	int num;
	node(int a = 0,int b = 0)
	{
		num = a;
		val = b;
	}
};

vector<node> g[maxn]; 	 

int main()
{
	int n,m;
	cin >> n >> m; 
	for( int i = 0 ; i < m ; i++ )   
	{
		dist[i] = INF;     //把每个点的花费都设为无穷大
		int x,y,v;
		cin >> x >> y >> v;
		g[x].edge.push_back(node(y,v));   //有向图 
	} 
	dist[0] = 0;						 //假设我们要计算0到任意一点的最短路径 
	for( int i = 1 ; i < n ; i++ )       //v-1次循环
	{
		int flag = 0;
		for( int j = 0 ; j < n ; j++ )       //遍历每一个节点对每个节点都进行松弛操作
		{
			for( int k = 0 ; k < g[j].edge.size() ; k++ )          //遍历与这个节点相邻的边
			{
				if( dist[j] + g[j].edge[k].val < dist[k] )
				{
					dist[k] = dist[j] + g[j].edge[k].val;	
					flag = 1;
				}
			}
		}
		if( !flag ) break;     //如果一次都没有松弛,那么直接break
	} 
	for( int i = 0 ; i < n ; i++ )
	{
		cout << dist[i] << endl;
	}
    return 0;
}

如果我们需要判断是否有负权环时,只要多进行一次循环,如果该循环还能进行松弛操作的话,就判断为有负权环。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值