数据分析
weixin_44322234
这个作者很懒,什么都没留下…
展开
-
matlab 视频去噪
Matlab 视频去噪算法clear all;videoRead = VideoReader('123.mp4'); %读取视频nFrameRead = videoRead.NumberOfFrames; %获得视频的帧数% vidHeightRead = videoRead.Height; %获得视频高度% vidWidthRead = videoRead.width; %获得视频宽度for i = 1 : nFrameRead; %对每帧图像做空间域滤波处理原创 2021-05-15 22:34:35 · 590 阅读 · 0 评论 -
医学图像读取代码
clc; // 清屏clear; //清楚变量 workspaceclose all; // 关闭图像?I = dicomread("path"); //医学图像的读取f = imread("path"); //普通图像的处理figure; //创建一个画板imshow(I) //显示图像figure;imshow(I,[1024,2048]); //数值0是黑,255是白 figure;subplot(2,2,1);imshow(I);figure;subplo原创 2021-03-02 09:54:29 · 254 阅读 · 0 评论 -
数据预处理 -----数据分箱
一、定义数据分箱(Binning)作为数据预处理的一部分,也被称为离散分箱或数据分段。其实分箱的概念其实很好理解,它的本质上就是把数据进行分组。分箱就是把数据按特定的规则进行分组,实现数据的离散化,增强数据稳定性,减少过拟合风险。逻辑回归中进行分箱是非常必要的,其他树模型可以不进行分箱。二、分箱原因在建立逻辑回归模型的过程中,基本都会对特征进行分箱的操作。有些树模型,虽然不是必须,也会对一些特征进行一些分箱,这里主要的原因是增强鲁棒性与避免过拟合。[外链图片转存失败,源站可能有防盗链机制,建议原创 2021-06-23 09:42:20 · 10766 阅读 · 2 评论 -
关联分析(Apriori算法 )---- python
关联分析(Apriori算法 )假设我们经营一家商品种类并不多的杂货店,我们对那些经常在一起被购买的商品组合感兴趣。设(1)通过Apriori算法实现从交易记录中找到商品的频繁项集。(2)通过(1)中计算的频繁项集,挖掘关联规则设交易清单为[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5],这里的数字代表商品;设最小支持度为0.5;最小置信度为0.7#1)通过Apriori算法实现从交易记录中找到商品的频繁项集def loadDataSet(): re原创 2021-06-07 18:50:36 · 766 阅读 · 1 评论 -
乳腺癌2002~2018城市和乡村个年龄段患病率曲线图绘制 ---pyechart
1、数据集(请保存为csv文件)year,20-24years,25-29years,30-34years,35-39years,40-44years,45-49years,50-54years,55-59years,60-64years,65-69years,70-74years,75-79years,80-84years,85-89years2002,0.16,0.46,1.23,1.6,2.3,5.35,6.25,6.71,8.39,12.67,11.75,16.5,20.74,7.462003原创 2021-05-29 14:38:39 · 918 阅读 · 0 评论 -
统计实验方法相关实验
import numpy as npimport pandas as pddf = pd.read_csv(r'C:\Users\David\Desktop\上课\健康数据挖掘\第三次作业\diabetes.csv')df.head()# 查看数据的信息df.info()# 查看数据的分布情况tmp = df.describe()print(tmp)# matploblib and seaborn import matplotlib.pyplot as pltimport se原创 2021-05-29 14:10:16 · 110 阅读 · 0 评论