机器学习线性回归总结

本文是对线性回归的详细总结,包括一元线性回归、多元线性回归和广义线性模型。通过最小化均方误差,利用最小二乘法求解一元线性回归的参数w和b。在多元线性回归中,使用矩阵形式求解最优权重w,最终得到线性回归模型。广义线性模型则通过非线性函数引入额外的非线性特性。
摘要由CSDN通过智能技术生成

最近重新回顾了一下机器学习的算法,把以前学过的再看一遍,然后整理总结在博客上。这次总结一下线性回归,参考书籍为周志华老师的西瓜书。

1、简述线性回归

线性回归顾名思义线性即线性关系,表示两个变量之间存在一次方函数关系 (参考百度百科);回归是一种统计分析的方式,直观的看就是寻找属性和结果之间的映射(函数)。接下来探讨一下常用的线性回归(在连续变量下)

2、一元线性回归

考虑一种最简单的情况:输入的属性只有一个。线性回归试图学的 f ( x i ) = w x i + b    使 得    f ( x i ) ≈ y i f(x_i)=wx_i+b \ \ 使得\ \ f(x_i)\approx y_i f(xi)=wxi+b  使  f(xi)yi

问题在于如何确定w和b,我认为机器学习和深度学习几乎都是在做一件事:最大化和最小化某个式子,就像我们认真做事的时候总想做到最好,不管这种贪心思维是好是坏还是怎么地,它确实是激励着我们,机器学习也不例外。显然在线性回归中,我们希望预测值更接近真实值,那么我需要一个度量的标准,“距离”是一个合适的标准。我准备以后写一篇关于各种距离的分析和总结,敬请期待。
我们使用平方距离(欧式距离) d = ( y ^ − y i ) 2 d=(\widehat{y}-y_i)^{2} d=(y yi)2来考察预测值和真实值的差距,其实就是均方误差(MSE)。
那么我们的目标是最小化这个d,即求w和b使得d最小。
( w ∗ , b ∗ ) =   a r g    m i n ∑ i = 1 m ( y ^ − y i ) 2   = a r g    m i n ∑ i = 1 m ( y i − w x i − b ) 2 (w*,b*)=\ arg\ \ min \sum\limits_{i=1}^{m}(\widehat{y}-y_i)^{2} \\ ~\\=arg \ \ min\sum\limits_{i=1}^{m}(y_i-wx_i-b)^2 (w,b)= arg  mini=1m(y yi)2 =arg  mini=1m(yiwxib)2

基于均方误差的求解方法称为“最小二乘法”,一元线性回归就是找一个直线,使得所有的样本到这条直线的欧式距离之和最小。
E ( w , b ) E_{(w,b)} E(w,b)为误差之和,分别对w和b求偏导并令其等于0
∂ E ( w , B ) ∂ b = 2 w ∑ i = 1 m x i 2 − 2 ∑ i = 1 m x i ( y i − b ) = 0                     ( 1 ) \frac{\partial{E_{(w,B)}}}{\partial{b}}=2w\sum\limits_{i=1}^{m}x_i^2-2\sum\limits_{i=1}^{m}x_i(y_i-b)=0\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ (1) bE(w,B)=2wi=1mxi22i=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值