逻辑回归(logistics regression)

逻辑回归是一种线性模型,通过Sigmoid函数将预测值转化为概率。本文介绍了Sigmoid函数的特性及其在二分类问题中的应用,详细阐述了逻辑回归的表达式、概率解释以及参数估计过程,特别是最大似然估计法和梯度上升法在求解参数中的作用。
摘要由CSDN通过智能技术生成

逻辑回归是一种广义的线性回归模型,它通过一个单调可微的函数将结果标签和线性回归预测值联系起来,在西瓜书中开头便介绍了单位阶跃函数
f ( x ) = { 0 = z &lt; 0 0.5 = z = 0 1 = z &lt; 0 f(x)=\left\{ \begin{aligned} 0 &amp; = &amp; z&lt;0\\ 0.5 &amp; = &amp; z=0 \\ 1 &amp; = &amp; z&lt;0 \end{aligned} \right. f(x)=00.51===z<0z=0z<0
显然这个函数不连续也不可微,那么我们便找到了一种新的替代函数:sigmoid函数
s i g m o i d           f ( z ) = 1 1 + e − z sigmoid\ \ \ \ \ \ \ \ \ f(z)=\frac{1}{1+e^{-z}} sigmoid         f(z)=1+ez1
这个函数曾经是深度学习最常用的激活函数,但是因为求导最大值为0.25,容易造成梯度消失等原因,被像线性整流函数(ReLu)等抢走了风头。讲了点题外话~~
sigmoid
那么在二分类问题中,常常以0.5作为分界线,将结果划分为两类,从上面的图像也可以看出,sigmoid函数非常的适合。
接下来对sigmoid函数进行求导:
d f ( z ) d z = e − z ( 1 + e − z ) 2                                 = 1 1 + e − z    ∗    e − z 1 + e − z                      = f ( z ) ( 1 − f ( z ) ) \frac{df(z)}{dz}=\frac{e^{-z}}{(1+e^{-z})^2} \\ ~\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\frac{1}{1+e^{-z}} \ \ *\ \ \frac{e^{-z}}{1+e^{-z}}\\ ~\\ \ \ \ \ ~~~~~~~~~~~~~~=f(z)(1-f(z)) dzdf(z)=(1+ez)2ez

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值