3D目标检测
文章平均质量分 78
Belouga-
拂彼白石,弹吾素琴。幽涧愀兮流水深,善手明徽高张清。
展开
-
H3DNet论文阅读笔记
H3DNet: 3D Object Detection Using Hybrid Geometric Primitives论文链接:https://arxiv.org/pdf/2006.05682.pdf代码链接(pytorch):https://github.com/zaiweizhang/H3DNet1.介绍属于VoteNet的提优作品,从一个投票中心点不准,用19个投票中心来,选取与目标距离最近的,其余做约束和特征辅助。这篇文章的idea受6DOF任务中基于关键点回归启发,原创 2021-11-09 17:21:56 · 1011 阅读 · 2 评论 -
Pointnet++代码详解:square_distance函数 & query_ball_point函数
Pointnet++代码详解Square_distance函数Query_ball_pointSquare_distance函数square_distance函数主要用来在ball query过程中确定每一个点距离采样点的距离。函数输入是两组点,N为第一组点的个数,M为第二组点的个数,C为输入点的通道数(如果是xyz时C=3),返回的是两组点之间两两的欧几里德距离,即N×M的矩阵。由于在训练中数据通常是以Mini-Batch的形式输入的,所以有一个Batch数量的维度为B。def square_dis原创 2021-06-09 22:58:25 · 910 阅读 · 0 评论 -
Pointnet++代码详解:farthest_point_sample函数
FPSfarthest_point_sample函数是来自于Pointnet++的FPS(Farthest Point Sampling) 最远点采样法,该方法比随机采样的优势在于它可以尽可能的覆盖空间中的所有点。最远点采样是Set Abstraction模块中较为核心的步骤,其目的是从一个输入点云中按照所需要的点的个数npoint采样出足够多的点,并且点与点之间的距离要足够远。最后的返回结果是npoint个采样点在原始点云中的索引。FPS的逻辑如下:假设一共有n个点,整个点集为N = {f1, f原创 2021-06-09 15:51:35 · 1485 阅读 · 0 评论 -
CVPR2021 三维目标检测(3D object detection)
[1] 3DIoUMatch: Leveraging IoU Prediction for Semi-Supervised 3D Object Detection(利用IoU预测进行半监督3D对象检测)[论文地址](https://arxiv.org/pdf/2012.04355.pdf)[代码地址](https://github.com/THU17cyz/3DIoUMatch)[2] Categorical Depth Distribution Network for Monocular 3D O原创 2021-04-10 10:07:02 · 3639 阅读 · 0 评论 -
论文基础知识
一. 可变形卷积CNNs对大型,未知形状变换的建模存在固有的缺陷,这种缺陷来源于CNNs模块固有的几何结构:卷积单元对输入特征图的固定位置进行采样;池化层以固定的比例进行池化;即使是ROI pooling也是将ROI分割到固定的bin中去。这些特性是有影响的,例如,在同一层Conv中,所有的激活单元的感受野是一样的,但由于不同位置可能对应着不同尺度或变形的物体,因此对尺度或者感受野大小进行自适应是进行精确定位所需要的。为了解决或者减轻这个问题, 提出了两种新的模块,可变形卷积(deformable co原创 2020-11-30 09:54:19 · 417 阅读 · 1 评论 -
VoteNet 笔记
VoteNet前言:1.论文介绍&相关工作2.Deep Hough Voting3.VoteNet 结构3.1 通过点云产生 投票(vote)3.2 区域提议,从投票结果分类4.损失函数前言:Deep Hough Voting for 3D Object Detection in Point Clouds重新设计了一种利用raw point cloud data的方式来做,既不依赖于2D检测器的性能,也不会出现为了照顾计算量导致的细节数据丢失。那么为什么原来直接利用点云的方法没有得到如此高的精原创 2020-11-18 11:06:47 · 2186 阅读 · 2 评论 -
Graph Neural Network 图神经网络笔记
这里写目录标题**GraphSAGE (Inductive Representation Learning on Large Graphs, NIPS2017)**1. Embedding generation2. Aggregator Architectures3. Learning the parameters4. 实验5. 思考**GAT (Graph Attention Networks, ICLR2018)**1. 概念2. 计算图注意力系数(attention coefficient)3. 聚合原创 2020-11-16 22:30:54 · 859 阅读 · 0 评论 -
目标检测的名词概念(持续记录中.....)
纯粹为了无知的自己在学习过程中遇到的不会的概念的记录(暂时无序):mAP定义及相关概念mAP: mean Average Precision, 即各类别AP的平均值AP: PR曲线下面积PR曲线: Precision-Recall曲线Precision: TP / (TP + FP)Recall: TP / (TP + FN)TP: IoU>0.5的检测框数量(同一Ground Truth只计算一次)FP: IoU<=0.5的检测框,或者是检测到同一个GT的多余检测框的数量F原创 2020-11-04 22:35:08 · 1361 阅读 · 0 评论 -
目标检测3维/点云/遥感数据集
主要有包含建筑物的数据集1. 点云分类(罗蒙诺索夫莫斯科国立大学)Legend: red — ground, black — building, navy — car, green — tree, cyan — low-vegetation.链接:点云分类2. Semantic3D大规模点云分类基准,它提供了一个带有大标签的自然场景的3D点云数据集,总计超过40亿个点,并且还涵盖了多种多样的城市场景。8个类别标签的分类基准,即 1:人造地形; 2:自然地形; 3:高植被; 4:低植被; 5:原创 2020-11-02 22:43:28 · 4431 阅读 · 11 评论 -
论文阅读速记:PointRCNN:3D Object Proposal Generation and Detection from Point Cloud
PointRCNN两阶段:一、 通过点云分割自下而上生成3D提案二、点云区域池化三、规范3D边界框优化原始点云的3D目标检测,只用点云作为输入。提出一种新的3D物体检测器,用于从原始点云中检测3D物体。所提出的Stage-1网络以自下而上的方式直接从点云生成3D方案,比以前的方案生成方法具有更高的召回率。Stage-2网络将语义特征和局部空间特征结合起来,在规范坐标中对提案进行了优化。此外,新提出的基于bin的损失证明了它在三维边界框回归中的有效性。两阶段:第一阶段:自下而上的3D proposal原创 2020-10-25 20:26:13 · 1477 阅读 · 0 评论