笔试题目:升级装备题

题目描述

升级装备题,每升级一次消耗一颗宝石,从一级升至五级概率分别为80%,40%,30%,10%,升级失败会掉级,请问升至5级平均消耗多少宝石?

分析题目

令E_i为从i级升到5级需要数量的期望
从 4 级 升 级 到 5 级 的 情 况 如 下 E 4 = 0.1 + 0.9 ( 1 + E 3 ) + 0.1 E 5 而 E 5 = 0 , 所 以 上 式 化 简 成 E 4 = 0.9 E 3 + 1 进 而 推 倒 其 他 情 况 , 可 得 如 下 : E 1 = 0.8 E 2 + 0.2 E 1 + 1 E 2 = 0.4 E 3 + 0.6 E 1 + 1 E 3 = 0.3 E 4 + 0.7 E 2 + 1 E 4 = 0.9 E 3 + 1 解 得 E 1 ≈ 151.042 \begin{aligned} & \\ &从4级升级到5级的情况如下 \\ & E_{4}=0.1+0.9( 1+E_{3})+0.1E_{5} \\ &而E_{5}=0,所以上式化简成E_{4}=0.9 E_{3}+1\\ &进而推倒其他情况,可得如下:\\ & E_{1}=0.8 E_{2}+0.2 E_{1}+1 \\ & E_{2} =0.4 E_{3}+0.6 E_{1}+1 \\ & E_{3} =0.3 E_{4}+0.7 E_{2}+1 \\ & E_{4}=0.9 E_{3}+1 \\ & 解得E_{1} \approx 151.042 & & \end{aligned} 45E4=0.1+0.91+E3+0.1E5E5=0E4=0.9E3+1E1=0.8E2+0.2E1+1E2=0.4E3+0.6E1+1E3=0.3E4+0.7E2+1E4=0.9E3+1E1151.042

另有解法:这是个很典型的 Absorbing Markov Chains, 可以直接利用其性质求解。即求出状态转移矩阵P的fundamental matrix N. 答案就是N1所有元素的和.
面试中的概率题-数学期望: link
https://www.zhihu.com/question/25420139
拓展题https://www.zhihu.com/question/25304052

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值