题目描述
升级装备题,每升级一次消耗一颗宝石,从一级升至五级概率分别为80%,40%,30%,10%,升级失败会掉级,请问升至5级平均消耗多少宝石?
分析题目
令E_i为从i级升到5级需要数量的期望
从
4
级
升
级
到
5
级
的
情
况
如
下
E
4
=
0.1
+
0.9
(
1
+
E
3
)
+
0.1
E
5
而
E
5
=
0
,
所
以
上
式
化
简
成
E
4
=
0.9
E
3
+
1
进
而
推
倒
其
他
情
况
,
可
得
如
下
:
E
1
=
0.8
E
2
+
0.2
E
1
+
1
E
2
=
0.4
E
3
+
0.6
E
1
+
1
E
3
=
0.3
E
4
+
0.7
E
2
+
1
E
4
=
0.9
E
3
+
1
解
得
E
1
≈
151.042
\begin{aligned} & \\ &从4级升级到5级的情况如下 \\ & E_{4}=0.1+0.9( 1+E_{3})+0.1E_{5} \\ &而E_{5}=0,所以上式化简成E_{4}=0.9 E_{3}+1\\ &进而推倒其他情况,可得如下:\\ & E_{1}=0.8 E_{2}+0.2 E_{1}+1 \\ & E_{2} =0.4 E_{3}+0.6 E_{1}+1 \\ & E_{3} =0.3 E_{4}+0.7 E_{2}+1 \\ & E_{4}=0.9 E_{3}+1 \\ & 解得E_{1} \approx 151.042 & & \end{aligned}
从4级升级到5级的情况如下E4=0.1+0.9(1+E3)+0.1E5而E5=0,所以上式化简成E4=0.9E3+1进而推倒其他情况,可得如下:E1=0.8E2+0.2E1+1E2=0.4E3+0.6E1+1E3=0.3E4+0.7E2+1E4=0.9E3+1解得E1≈151.042
另有解法:这是个很典型的 Absorbing Markov Chains, 可以直接利用其性质求解。即求出状态转移矩阵P的fundamental matrix N. 答案就是N1所有元素的和.
面试中的概率题-数学期望: link
https://www.zhihu.com/question/25420139
拓展题https://www.zhihu.com/question/25304052