线性表是n个数据特性相同的元素的组成有限序列,是最基本且常用的一种线性结构(线性表,栈,队列,串和数组都是线性结构),同时也是其他数据结构的基础。
线性表最核心的是这几种基本方法,即:
一、判断线性表是否为空
二、得到线性表的大小
三、得到线性表中的某个元素或某个元素的索引
四、插入或删除元素
五、输出线性表中的元素
这几种方法都可用数组和链表来实现,掌握了这几种基本方法,其他的变形也不在话下。数组方式看代码理解很好理解,下面解释一下链表方式实现。
链表可分为单向链表、双向链表、循环链表,这里提供的是单向链表的代码。
单链表:
从上图可以看出,单链表的上一个结点指针指向下一个结点,最后一个结点的指针域为null。
结点的删除:
删除一个结点,如删除上图中q结点,只需将p结点中的指针域指向a3,然后将a2释放掉(free)即可。
结点的插入:
插入一个结点,如插入上图中s结点,首先将s的指针域指向a2(也就是把s的next赋值为p的next),然后将p结点的指针域指向x即可(p的next指向x)。
其他几种链表的实现大同小异,这里就不介绍了
两种方式的代码实现:
一、数组实现
1、基本方法头文件
#ifndef linearList_
#define linearList_
#include<iostream>
using namespace std;
template<typename T>
class linearList
{
public:
virtual ~linearList() {};
virtual bool empty() const = 0;
virtual int size() const = 0;
virtual T get(int theIndex) const = 0; //返回索引为 theIndex 的元素
virtual void erase(int theIndex) = 0;
virtual void insert(int theIndex, const T& element) = 0;
virtual void output(ostream& out)const = 0;
};
#endif
2、实现方法的头文件
#ifndef arrayList_
#define arrayList_
#include<