正睿集训数论专题【8.9】

这篇博客深入介绍了数论中的关键概念,包括数论函数、积性函数、莫比乌斯函数及其反演,以及狄利克雷卷积的定义和性质。通过例子和定理,揭示了数论函数间的深刻关系,是理解数论基础的好资源。
摘要由CSDN通过智能技术生成

又到了“最简单”的数论了,
好开心啊~(。◕ˇ∀ˇ◕)



简单数论

数论函数/算术函数

定义

指在正整数集上的实值或复值函数。
一般地,也可以把其看做是某一整数集上定义的函数,如: d ( n ) = ∑ d ∣ n 1 d(n)=\sum_{d | n} 1 d(n)=dn1以正整数为定义域的函数 f ( n ) f(n) f(n) ,例如 数列 { α n } \{\alpha n\} { αn} n ! n! n! 、幂 n λ n\lambda nλ 等都是数论函数。

内容

n n n 质因子分解为 n = p 1 l 1 … p s l s n=p_{1}^{l_{1}} \dots p_{s}^{l_{s}} n=p1l1psls

① 莫比乌斯函数 μ ( n ) \mu(n) μ(n) μ ( n ) = { 1 ( n = 1 ) ( − 1 ) s ( l 1 = ⋯ = l s = 1 ) 0 ( 有 某 个   l j > 1 ,   1 ⩽ j ⩽ s ) \mu(n)=\begin{cases}1&(n=1)\\(-1)^s&(l_1=\dots=l_s=1)\\0&(有某个\ l_j>1,\ 1\leqslant j\leqslant s)\end{cases} μ(n)=1(1)s0(n=1)(l1==ls=1)( lj>1, 1js)易知, ∑ d ∣ n μ ( d ) = Δ ( n ) = { 1 ( 若   n = 1 ) 0 ( 若   n > 1 ) \sum_{d|n}\mu(d)=\Delta(n)=\begin{cases}1&(若\ n=1)\\0&(若\ n>1)\end{cases} dnμ(d)=Δ(n)={ 10( n=1)( n>1)
② 欧拉函数 φ ( n ) \varphi(n) φ(n) ,易证: φ ( m n ) = d φ ( m ) φ ( n ) φ ( d ) \varphi(mn)=\frac{d\varphi(m)\varphi(n)}{\varphi(d)} φ(mn)=φ(d)dφ(m)φ(n)其中 ( m , n ) = d (m,n)=d (m,n)=d

③ 除数函数

u ! = 0 u!=0 u!=0 时,有 L { f ( t ) } = F ( s ) = ∫ 0 ∞ f ( t ) e − s t d t \mathscr{L}\{f(t)\}=F(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{d} t L{ f(t)}=F(s)=0f(t)estdt u = 0 u=0 u=0 时, f ( t ) = L − 1 { F ( s ) } = 1 2 π j ∫ σ 0 − j ∞ σ 0 + j ∞ F ( s ) e s t d s f(t)=\mathscr{L}^{-1}\{F(s)\}=\frac{1}{2 \pi j} \int_{\sigma_{0}-j \infty}^{\sigma_{0}+j \infty} F(s) e^{s t} \mathrm{d} s f(t)=L1{ F(s)}=2πj1σ0jσ0+jF(s)estds σ 1 ( n ) = σ ( n ) \sigma1(n)=\sigma(n) σ1(n)=σ(n) ,正整数 n n n 满足 σ ( n ) = 2 n \sigma(n)=2n σ(n)=2n 时, n n n 就叫做完全数

积性函数

定义

1、积性函数:对于任意互质的整数 a a a b b b 有性质 f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b) 的数论函数。
2、完全积性函数:对于任意整数 a a a b b b 有性质 f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b) 的数论函数。

举例

积性函数

  • φ ( n ) \varphi(n) φ(n) — 欧拉函数
  • μ ( n ) \mu(n) μ(n) — 莫比乌斯函数,关于非平方数的质因子数目
  • g c d ( n , k ) gcd(n,k) gcd(n,k) — 最大公因子,当 k k k 固定的情况
  • d ( n ) d(n) d(n) n n n 的正因子数目
  • σ ( n ) \sigma(n) σ(n) n n n 的所有正因子之和
  • σ k ( n ) \sigma k(n) σk(n) — 因子函数, n n n 的所有正因子的 k k k 次幂之和,当中 k k k 可为任何复数
  • 1 ( n ) 1(n) 1(n) — 不变的函数,定义为 1 ( n ) = 1 1(n)=1 1(n)=1(完全积性)
  • l d ( n ) ld(n) ld(n) — 单位函数,定义为 l d ( n ) = n ld(n)=n ld(n)=n(完全积性)
  • l d k ( n ) ldk(n) ldk(n) — 幂函数,对于任何复数、实数 k k k ,定义为 l d k ( n ) = n k ldk(n)=n^k ldk(n)=nk(完全积性)
  • ε ( n ) \varepsilon(n) ε(n) — 定义为:若 n = 1 , ϵ ( n ) = 1 n=1,\epsilon(n)=1 n=1,ϵ(n)=1 ;若 n > 1 , ε ( n ) = 0 n>1,\varepsilon(n)=0 n>1,ε(n)=0 。因此又被称为 “对于狄利克雷卷积的乘法单位” (完全积性)
  • λ ( n ) \lambda(n) λ(n) — 刘维尔函数,关于能整除 n n n 的质因子数目
  • γ ( n ) \gamma(n) γ(n) — 定义为 γ ( n ) = ( − 1 ) ω ( n ) \gamma(n)=(-1)^{\omega(n)} γ(n)=(1)ω(n)
  • ω ( n ) \omega(n) ω(n) — 加性函数,是不同的能整除 n n n 的质数的数目
    另外,所有 狄利克雷特征 均是完全积性的
    T i p s : \mathscr{Tips:} Tips:有些看不懂没有关系,就当了解一下了。

非积性函数

  • Λ ( n ) \Lambda(n) Λ(n) — 冯·曼戈尔特函数,定义为:当 n n n 是质数 p p p 的整数幂, Λ ( n ) = ln ⁡ ( p ) \Lambda(n)=\ln(p) Λ(n)=ln(p) ,否则 Λ ( n ) = 0 \Lambda(n)=0 Λ(n)=0
  • π ( n ) \pi(n) π(n) — 定义为不大于正整数 n n n 的质数的数目
  • P ( n ) P(n) P(n) — 一个整数能表示成正整数之和的方法的数目
性质
性质一

根据算数基本定理,若将 n n n 表示成质因子分解式 n = p 1 a 1 p 2 a 2 ⋅ ⋅ ⋅ p n a n n=p_1^{a_1}p_2^{a_2}···p_n^{a_n} n=p1a1p2a2pnan则有 f ( n ) = f ( p 1 a 1 ) f ( p 2 a 2 ) ⋅ ⋅ ⋅ f ( p n a n ) f(n)=f(p_1^{a_1})f(p_2^{a_2})···f(p_n^{a_n}) f(n)=f(p

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值