排序算法 ---- 选择排序

本文深入解析了选择排序算法,一种简单直观的排序方法。通过详细步骤说明其工作原理,包括在未排序序列中查找最小元素并放置于起始位置的过程,直至整个序列排序完成。文章还分析了选择排序的优点,如数据移动最少,以及其时间复杂度为O(n^2)的特点。
摘要由CSDN通过智能技术生成

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。

选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种。

红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

代码实现

在这里插入图片描述
红色表示当前最小值,黄色表示已排序序列,蓝色表示当前位置。

def select_sort(alist):
    n = len(alist)
    # 外层循环经过 n-1 次的选择操作
    for j in range(n-1):
        # 最小元素的下标
        min_index = j
        for i in range(j+1, n):
            if alist[min_index] > alist[i]:
                min_index = i
        # 如果选择出的最小元素不在正确位置,进行交换
        if min_index != j:
            alist[j], alist[min_index] = alist[min_index], alist[j]


if __name__ == '__main__':
    alist = [54, 226, 93, 17, 77, 31, 44, 55, 20]
    select_sort(alist)
    print(alist)


# 选择排序的时间复杂度
# 最优的时间复杂度O(n2)
# 最坏的时间复杂度O(n2)
# 稳定性:不稳定(在升序排列中选择最大的情况,相同元素有位置的交换)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值