提高篇-最短路径问题(图论)-《算法笔记》同步笔记总结与补充

专题要点:

  • 无负环的单源最短路径
    • Dijkstra(配合dfs,优先队列优化)
  • 一般单源最短路径
    • Dijkstra
    • Bellman-Ford
    • SPFA
  • 全源最短路径
    • Floyd
    • 暴力:对每个顶点做一次Dijkstra

可解问题:

  • 基础问题(第一标尺):最短路径
  • 引申问题(第二标尺)边权花费数组c[]点权资源数组w[]最短路径条数num[]路径上的结点数目pt[]前驱结点记录pre[]

基础问题(求最短路径)是第一标尺,其余引申问题是第二标尺,求最短路径使用Dijkstra算法,过程中使用pre[]存储,dfs搜索pre[]以解决第二标尺问题。PS:第二标尺涉及复杂计算的话,其实就是模拟题

编程总是忽视的问题

  • Dijkstra最外层循环N次(N为顶点数)的含义:为了将所有顶点都访问到,并在循环体中用vis[]标记;循环体内再执行,找出最短边,更新最短路径的操作。
  • dfs逆向遍历,逆向输出:对pre[]dfs时,由于递归的性质是逆向遍历的,叶子节点(边界)即为源点,在边界对路径点权边权计算时,切记要逆序访问vector< int >tempPath
  • dfs仍然过程中要记得特有的反向操作
tempPath.push_back(v);
……
tempPath.pop_back();
  • dfs得到一条完整路径后的计算问题:前提:到达边界后,要手动将边界节点push_back到当前路径中,此时得到一条完整路径;然后逆序遍历整条路径
    • 计算点权:遍历路径中所有点即可
    • 计算边权:遍历路径中的点和该点的后继,拿到两个端点方可得到边权进行计算
  • 访问邻接矩阵,Dijkstra访问与当前顶点相连的点:一定要先判断边是否存在if(!vis[v] && G[u][v]),不然有的边不存在(G[u][v] == 0)会错误更新最短距离
  • 访问邻接表,vector路径的循环变量i的含义:i并不代表另一个顶点,另一个顶点存储在vector[i]中,i只是循环变量,是辅助获取顶点值的作用
  • 计算平均值:两种方法,一是一边循环一边求平均值,而是循环加和之后再求平均值,但是做题时遇到点情况
    可能边循环边求平均值是首选吧??目前还在存疑
  • 前驱结点集pre[]:将当前节点的前驱push进去,其中v是当前节点,u是v的前驱结点,要区分清楚
for(int v = 0; v < G[u].size(); ++i)
{
	if(满足条件)
	pre[v].push_back(u);
}

几点注意:

  • 要得到具体路径,必须通过pre[]和dfs(递归)思想,注意是逆向访问(即从终点访问到起点)此方法最为保险(对于Dijkstra,Bellman,SPFA)
  • 单一Dijkstra(不对多条最短路径进行dfs)
    • 要根据题目要求增减边权花费数组c[]点权资源数组w[]最短路径条数num[]路径上的结点数目pt[]前驱结点记录pre[]
    • 要注意各个数据结构的初始化问题
  • Dijkstra + dfs解第二标尺首选
    • 前提:声明前驱结点集合vector pre[maxn],方能进行dfs
    • 访问路径过程中要用tempPath记录路径中的结点(逆向记录)
    • 增加对完整路径计算tempValue与最优值optValue对比,将最优值所在的tempPath存储到最优路径optPath中
    • 由于递归访问时逆向记录的(tempPath.size() - 1是起点),计算点权边权时最好倒叙访问 for(int i = tempPath.size() - 1; i >= 0; i–)
  • 全源最短路径:对比Floyed和暴力Dijkstra,其时间复杂度均为O(N3),但计算量有所不同。
    • 效果对比
    • Dijkstra过程中很多路径和结果计算是重复的,虽然时间复杂度相同,但运算量相差很多;
    • Dijkstra需要更多的空间复杂度,Floyd不需要邻接矩阵或邻接表,vis[]数组
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值