获取本日涨停封盘后第二次交易日上涨/下跌的概率
有许多投资者喜欢在股票涨停封盘后,跟进买入。当股票涨停封盘时,意味着在涨停价格上有大量的买单堆积,而卖单相对较少。这种情况下,市场上的股票供应变得极为稀缺。投资者会认为,由于大量的买单无法得到满足,在后续交易日中,股票价格很可能会继续上涨,以平衡这种供需关系。例如,如果一只股票因为重大利好消息而涨停,像公司获得了一笔巨额订单或者发布了超预期的业绩报告,投资者会预期这种利好因素不会在短期内消失,所以涨停后仍然想要买入,以便在股票后续的上涨过程中获利。此外,从技术分析角度来看,股票价格的走势具有一定的惯性。如果一只股票能够强势涨停,说明它处于一个非常强劲的上涨趋势之中。许多投资者相信趋势的力量,他们会觉得涨停只是上涨趋势的一个阶段,后续很可能还会有连续涨停或者大幅上涨的情况出现。比如一些热门题材股,在题材热度持续升温的过程中,涨停后常常会吸引更多资金的关注,推动股价进一步走高。
然而,股票涨停后跟进买入也存在很大的风险。因为涨停可能是由于短期的投机炒作,或者是消息的提前透支等原因造成的。一旦市场情绪反转、利好消息被证伪或者主力资金撤离,跟风买入的投资者很可能会遭受损失。
我们用数据来看一下在当日涨停封盘后,第二次交易日是上涨还是下跌?
import efinance as ef
import numpy as np
import pandas as pd
from tqdm import tqdm
all_stocks = ef.stock.get_realtime_quotes()
stock_codes= np.array(all_stocks["股票代码"])
stock_rise_fall_arr = []
for stock_code in tqdm(stock_codes):
# 获取股票历史行情数据,需要设置fqt复权方式为不复权,即fqt=0,单纯考虑股价变化
df = ef.stock.get_quote_history(stock_code, fqt=0)
if len(df) == 0:
continue
stock_rise_fall = {
}
stock_rise_fall["股票代码"] = stock_code
stock_rise_fall["股票名称"] = df["股票名称"].loc[0]
stock_rise_fall[