获取首日涨停封盘后第二次交易日上涨/下跌的概率

获取本日涨停封盘后第二次交易日上涨/下跌的概率

有许多投资者喜欢在股票涨停封盘后,跟进买入。当股票涨停封盘时,意味着在涨停价格上有大量的买单堆积,而卖单相对较少。这种情况下,市场上的股票供应变得极为稀缺。投资者会认为,由于大量的买单无法得到满足,在后续交易日中,股票价格很可能会继续上涨,以平衡这种供需关系。例如,如果一只股票因为重大利好消息而涨停,像公司获得了一笔巨额订单或者发布了超预期的业绩报告,投资者会预期这种利好因素不会在短期内消失,所以涨停后仍然想要买入,以便在股票后续的上涨过程中获利。此外,从技术分析角度来看,股票价格的走势具有一定的惯性。如果一只股票能够强势涨停,说明它处于一个非常强劲的上涨趋势之中。许多投资者相信趋势的力量,他们会觉得涨停只是上涨趋势的一个阶段,后续很可能还会有连续涨停或者大幅上涨的情况出现。比如一些热门题材股,在题材热度持续升温的过程中,涨停后常常会吸引更多资金的关注,推动股价进一步走高。
然而,股票涨停后跟进买入也存在很大的风险。因为涨停可能是由于短期的投机炒作,或者是消息的提前透支等原因造成的。一旦市场情绪反转、利好消息被证伪或者主力资金撤离,跟风买入的投资者很可能会遭受损失。

我们用数据来看一下在当日涨停封盘后,第二次交易日是上涨还是下跌?

import efinance as ef
import numpy as np
import pandas as pd
from tqdm import tqdm

all_stocks = ef.stock.get_realtime_quotes()
stock_codes= np.array(all_stocks["股票代码"])

stock_rise_fall_arr = []

for stock_code in tqdm(stock_codes):
    # 获取股票历史行情数据,需要设置fqt复权方式为不复权,即fqt=0,单纯考虑股价变化
    df = ef.stock.get_quote_history(stock_code, fqt=0)
    if len(df) == 0:
        continue
    stock_rise_fall = {
   }
    stock_rise_fall["股票代码"] = stock_code
    stock_rise_fall["股票名称"] = df["股票名称"].loc[0]
    stock_rise_fall[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

被风吹过的会不会要逝去

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值