魔方第二基本定理:注意***,这里的正方向标记将使用TW算法的标记法。
对于∀g∈ H (也就是广义的魔方群,可以拆散魔方) ,g在这里代表任意的一个魔方状态
则=>:,以下两命题可以互推(↔)
{
g ∈ G (魔方群,可以通过6个基本操作生成的)
}
↔
{ 以下3个命题都成立
1.sgn(σ(g)) = sgn(ρ(g)) --(题外话:使用这个用来证明一个魔方不能单纯变化是:只交换一对角块位置,而棱块位置不变;
-- 也不能单纯变化是:只交换一对棱块位置,而角块位置不变)
2.∑(12在上 i=1) wi(g) = 0 (mod 2) -- 应用起来,可以解释魔方单纯这样变化是不可能的:只翻转一个棱块的方向;
3.∑(8在上 i=1) vi(g) = 0 (mod 3) -- 也不能单纯变化是:只翻转一个角块的方向,120 or 240都不行
}
证明:
已知集合{U,D,F,B,L,R},记为Actions={U,D,F,B,L,R}
左推右:比较简单,
{
1.符号相等:
1.任意g∈G,可以表示成g=X1X2...Xk, 这里X1到Xk都是集合{U,D,F,B,L,R}之一。
2.首先验证集合中单独6个元素满足sgn(σ(Xn)) = sgn(ρ(Xn)),这里略过(底层是因为因为4轮换?)。
3,sgn是同态映射,也就是具有“保持运算”的性质,所以任意复合的结果,sgn都不变。
4.sgn(σ(g)) = ∏(上k,下i=1)sgn(σ(Xi)) 由于g的定义,σ的同态性,sgn的同态性。
= ∏(上k,下i=1)sgn(ρ(Xi)) 由于集合中6个元素都满足sgn(σ(Xn)) = sgn(ρ(Xn))
= sgn(ρ(g)) 由于sgn的同态性,ρ的同态性,g的定义。
例如:
已知:sgn(σ(F)) = sgn(ρ(F)), sgn(σ(R)) = sgn(ρ(R))
则sgn(σ(R)σ(F)) = sgn(σ(R)) + sgn(σ(F)) 是由于sgn的同态性质
= sgn(ρ(R)) + sgn(ρ(F)) 由于已知等式
= sgn(ρ(R)ρ(F)) 是由于sgn的同态性质
2.棱块向量的各分量的和为0(模2):
做归纳法,对复合操作g所需的{U,D,F,B,L,R}中元素数量,记为l(g)作归纳:
1.l(g)=1 成立,因为根据查w表可知。
2.假设l(g)=k-1成立,假设g写成任意的n-1个复合,即:∀M_1∈Actions,∀M_2∈Actions,...,∀M_k-1∈Actions , 即g=M_1M_2...M_k-1,则有:
∑(上12,下i=1)wi(M_1M_2...M_k-1) = 0(mod 2)
3.则l(g)=k,取g=X_1X_2...X_k,如何证明归纳成立?:
1.由假设,分别取M_1,M_2,...,M_k-1分别取为X_1,X_2,...,X_k-1,
可得到:∑(上12,下i=1)wi(X_1X_2...X_k-1) = 0(mod 2)
2.命题1已知: w(xy) := w(x) + σ(x)^(-1)·w(y) , 这里取x= X_1X_2...X_k-1 , y=Xk,
得到:w(xy) = w(g) = w(X_1X_2...X_k-1) + σ(X_1X_2...X_k-1)^(-1)·w(Xk)
3.将2中得到的等式左右取个分量的求和,仍然相等,
得到:∑(上12,下i=1)wi(xy) = w(g) = ∑(上12,下i=1)wi(X_1X_2...X_k-1) + ∑(上12,下i=1)(σ(X_1X_2...X_k-1)^(-1)·w(Xk))_i
4.小引理:因为X_1到X_k-1都满足σ(X_n)∈S12,σ是同态映射,即保持运算,因此σ(X_1)·σ(X_2)···σ(X_k-1) = σ(X_1X_2...X_k-1)
因为等式左边都是S12群中的元素,封闭性知等式左边∈ S12,则=>:, 等式右边σ(X_1X_2...X_k-1)∈ S12
5.观察3的等式右边加法的第二项: ∑(上12,下i=1)(σ(X_1X_2...X_k-1)^(-1)·w(Xk))_i ,
即:σ(X_1X_2...X_k-1)^(-1) 作用到 w(Xk) 以后 , 取所有分量求和。
因为 σ(X_1X_2...X_k-1)^(-1) 也是∈ S12, σ(X_1X_2...X_k-1)^(-1)作用到w(Xk)这个向量后,只是重新排列了各分量,求和是不变的,
因此得到:∑(上12,下i=1)(σ(X_1X_2...X_k-1)^(-1)·w(Xk))_i = ∑(上12,下i=1)(w(Xk))_i
以此为前提,因为Xk是Actions里面的单独一个元素,也就是归纳法l(g)=1的情况,因此∑(上12,下i=1)(w(Xk))_i = 0 (mod 2)
总结得到:∑(上12,下i=1)(σ(X_1X_2...X_k-1)^(-1)·w(Xk))_i = ∑(上12,下i=1)(w(Xk))_i = 0 (mod 2)
6.我们将3得到的等式:w(g) = ∑(上12,下i=1)wi(X_1X_2...X_k-1) + ∑(上12,下i=1)(σ(X_1X_2...X_k-1)^(-1)·w(Xk))_i
左右两边取模2,依然相等:
w(g) = ∑(上12,下i=1)wi(X_1X_2...X_k-1) + ∑(上12,下i=1)(σ(X_1X_2...X_k-1)^(-1)·w(Xk))_i (mod 2)
由1知道等式右边第1项:∑(上12,下i=1)wi(X_1X_2...X_k-1) = 0(mod 2)
由5知道等式右边第2项: ∑(上12,下i=1)(σ(X_1X_2...X_k-1)^(-1)·w(Xk))_i = 0 (mod 2)
因此w(g) = 0 (mod 2)
3.角块向量的各分量的和为0(模3)。基本和2类似的步骤,这里略过。
}
右推左:
{
魔方还原状态e ↔ g∈G,1.σ(g)=id,2.ρ(g)=id,3.w(g)={0,0,...,0},4.v(g)={0,0,...,0}
分情况讨论:(1.只满足条件1+2+3;2.只满足条件1+2+4;3.只满足条件3+4)
1.对于g∈H,对于棱块和角块位置不变,即σ(g)=id,ρ(g)=id,且w(g)={0,0,...,0}全零时的情况。换句话说,也就是全体位置都不变,棱块方向都不变时,换句话说只有可能是部分角块方向变了
即已满足(1),(2),如果再给假设条件(3)的话,则=>: 满足g∈ G ,证明如下:
0.修改目标命题:
要证g∈ G,只需证新的目标命题:
“此时的状态,都能变换回还原状态”
给出变换的算法步骤,(或者弱一点,证明这样的变换存在即可)。
1.小引理Lemma1:g1 = (R'D^2RB'U^2B)^2 ∈ G , g1的效果如下:
则=>: g1可以保持UFR和DBL以外的块的方向和位置,只改变UFR和DBL的方向,
分别是UFR的方向数+2,DBL的方向数+1。
2.以下会介绍一个完整的步骤,证明该状态g,可以通过Actions的复合得到(换句话说,就是能还原回初始魔方):
1.首先用小引理中的g1还原F面的4个角块的方向数为0:
1.(涉及g1)如果3号方向数没还原,则使用n次g1后,方向数+2n后必然符合mod3 = 0 (注意:底层是因为2,3互质)。完成F面1个方向数还原。
下面操作必须保证已还原的角块的方向数不会改变,不然F面已还原方向数的角块的数量不会递增(换句话说,就白干了):
2.(涉及F,g1)向UFR位置移入其他F面的块:这一步通过若干F操作即可,同样类似1的操作n次g1后,方向数+2n后必然符合mod3 = 0 。完成F面2个方向数还原。
3.(涉及F,g1)重复第2步。完成F面3个方向数还原。
(涉及F)注意,这里F面的第4个方向数还没处理,先留着,通过若干F把它移到UFR。
3.然后上一步的还没处理第4个方向数X就起作用了,因为下面要处理的是B面的4个方向数,通过g1和B的复合操作可以将B面的一个个方向数还原为0,具体步骤:
1.(涉及g1)如果3号方向数没还原,则使用n次g1后,方向数+n后必然符合mod3 = 0 。因此B面第1个方向数还原。
2.(涉及B,g1)向DBL位置移入其他B面的块:这一步通过若干B操作即可,同样类似1的操作n次g1后,方向数+n后必然符合mod3 = 0 。因此B面第2个方向数还原。
3.(涉及B,g1)重复第2步。完成B面3个方向数还原。
4.小引理:假设角块的方向数求和后,模3为0,假设8个角块的方向数中,有7个方向数被以上步骤还原为0以后,则=>,第8个角块的方向数也还原成0 ,为什么呢?:
由于前7个方向数还原操作后,7个方向数之和模3不会变,还是0,这是因为:
还原操作涉及到的只有{F,B和g1},由于这3者之一,任意取一个记为X,都满足∑(8 i=1)v(X)_i=0 (mod 3):
F和B通过查v表可知,
而g1则只需实际操作一次后,看到只修改了全体角块中2个角块的方向数,而且方向数一个+1,一个+2,所以也满足求和模3为0。
换句话说,初始状态经过上述{F,B和g1}任意操作后,增加v(X)的各个分量,因为上述已知求和都是mod 3为0,增加这些分量以后再求和也是mod 3为0。
5.观察现在还没还原的F面和B面中的角块的方向数,发现各剩下一个,以下我们会把它俩分别放在UFR和DBL位置,然后执行n次g1,则3号角块方向数+2n后必然符合mod3 = 0,详细步骤:
(涉及F,B)把它俩分别放在UFR和DBL位置,只需要通过若干次F或B即可。
(涉及g1)执行g1以后,其中3号方向数还原为0了,再根据小引理4,得到第8个角块也会还原为0。
至此,已将8个角块的方向数全部还原为0,即v(g)={0,0,...,0}。而且w(g)还是全零。(是的,因为过程中操作g1,F,B不改变棱块的方向数。)
5.1. 这里其实可以记成一个小引理:假设有状态g∈H,假设σ(g)=id,ρ(g)=id,且∑(8在上 i=1) vi(g) = 0 (mod 3) , 则=>,
g能通过有限次作用G中的元素,得到新的性质:v(g)={0,0,...,0}。
其实引理可以再一般化一点:假设有状态g∈H,且∑(8在上 i=1) vi(g) = 0 (mod 3) , 则=>,
g能通过有限次作用G中的元素,得到新的性质:v(g)={0,0,...,0}。而且不改变棱块的方向数。
5.因此假设中情况:σ(g)=id,ρ(g)=id,且w(g)={0,0,...,0},
再加上上述步骤,记为C1,C1的操作结果:v(g)={0,0,...,0} , 就得到了魔方群中的一个元素状态e,
而上述步骤每个操作都是G中的元素,其复合C1也是元素,具有逆元C1^(-1)
也就是g是e可以通过作用Actions集合的复合C1^(-1)得到。
换句话说g可以表示成G中元素e·C1^(-1),根据封闭性,还是在群G中,
因此当前假设的情况g∈G成立。
2.对于棱块和角块位置不变,即σ(g)=id,ρ(g)=id,且v(g)={0,0,...,0}全零时的情况。且满足(1),(2),(3)的话,
则=>: 满足g∈ G,
证明如下:
1.可以用这个小引理Lemma2:g2 = LFR'F'L'U^2RURU^−1R^2U^2R, 则=>:
g2可以保持其他块的方向和位置,只改变UF和UR的方向,分别是UF的方向+1,UR的方向的方向+1。
2.也用这个小引理lemma3: g_3= U R L' F L L F R L B B L L U' B B R R F F D D L L U' D'
g_3可以保持其他块的方向和位置,只改变FU和FD的方向,分别是FU的方向+1,FD的方向的方向+1。
2.1. 小引理:假设棱块的方向数求和后,模2为0,假设12个棱块的方向数中,有11个方向数能被G中若干元素作用后还原为0,则=>,第12个棱块的方向数也还原成0 ,为什么呢?:也是类似上面证明。
2.当前状况要变成还原状态,过程类似于情况1中的证明:这里简单描述步骤:
(涉及g1,R,虽然用到R,但是R是“类交换子”中的一部分,换句话说,R一共执行了4次,相当于没有对角块方向数和位置,发生影响)
先用g2和R逐个还原R面的4个方向数。至此已还原4个方向数。这一行前面的过程,R一共执行了3次。当然为了保证角块方向数不变,R面4个位置要弄回这一步开始时的顺序,再执行1次R即可。
(涉及g1_R,B,虽然用到B,但是B是“类交换子”中的一部分,换句话说,B一共执行了4次,相当于没有对角块方向数和位置发生影响)
还原B面的3个BU,BD,BL:然后g1的“R”变式,也就是用R面当成前面,直接操作g1,配合B,逐个还原B面的3个棱块。这一行前面的过程,B一共执行了3次。至此已还原7个方向数。当然B面4个位置要弄回这一步开始时的顺序,要执行1次B。
(涉及g1_B,L,虽然用到L,但是L是“类交换子”中的一部分,换句话说,L一共执行了4次,相当于没有对角块方向数和位置发生影响)
还原L面的1个LD:然后g1的“B”变式,也就是用B面当成前面,直接操作g1,配合L还原L面1个棱块。这一行前面的过程,L一共执行了2次。至此已还原8个方向数。当然B面4个位置要弄回这一步开始时的顺序,要执行2次L。(这一步故意留一个L面的LU没有还原方向数)
(涉及g1_L,F,虽然用到F,但是F是“类交换子”中的一部分,换句话说,F一共执行了4次,相当于没有对角块方向数和位置发生影响)
还原F面的3个FL,FD:然后g1的“L”变式,也就是用L面当成前面,直接操作g1,配合F逐个还原这2个棱块。这一行前面的过程,F一共执行了2次。至此已还原10个方向数。当然F面4个位置要弄回这一步开始时的顺序,要执行2次F。(这里故意留一个F面的FU没有还原方向数)。
现在的状态先分析一下,剩余的2个棱块UL,UF方向数只有下面的选择:分类讨论:
根据小引理2.1. ,也就是以上设计的所有公式涉及的{g1,g1变式,以及Actions中的元素},都保持了一个性质:方向数求和模2为0。
因此当前情况下σ(g)=id,ρ(g)=id,且v(g)={0,0,...,0},也将得到性质w(g)={0,0,...,0}。v(g)还是全零。
{
1.0和1:由引理2.1的使用,这种情况不可能存在。因为mod 2 ≠ 0 。
2.0和0;不用操作,已还原方向数。
3.1和0;由引理2.1的使用,这种情况不可能存在。因为mod 2 ≠ 0。
4.1和1:执行一次g1的“L”变式,这样就还原了所有棱块方向数。
}
3.至此已还原了棱块的方向数。并且过程中不改变角块的方向数。加上原有假设全体位置不变(在过程中也不受影响),因此已达到魔方还原状态e。
3.0 这里其实可以记成一个小引理:假设有状态g∈H,假设σ(g)=id,ρ(g)=id,且∑(12在上 i=1) wi(g) = 0 (mod 2) , 则=>,
g能通过有限次作用G中的元素,得到新的性质:w(g)={0,0,...,0}。
这里可以一般化引理:假设有状态g∈H,且∑(12在上 i=1) wi(g) = 0 (mod 2) , 则=>,
g能通过有限次作用G中的元素,得到新的性质:w(g)={0,0,...,0}。并且不改变角块的方向数。
因此当前假设的情况g∈G成立。
(目前来看,思路是:为了达到还原成e的新目标,而分情况讨论,每次讨论都故意缺一个充要条件的其中一条,
其实是1/4的充要条件(σ(g)=id,ρ(g)=id,w(g)={0,0,...,0},v(g)={0,0,...,0})。
可以发现上面两种情况无意中独立出来2条引理,是下面的关键。)
3.现在考虑这种情况:σ(g)=id,ρ(g)=id,即棱块和角块位置不变,且满足(1),(2),(3)的话,也可以满足g∈ G。(换句话说,这里直接缺了e中的2条条件):
1.由上面5.1.引理知道,存在有限操作X1,g状态可以变成新的状态g_2,然后拥有性质v(g)={0,0,...,0}。
2.由上面3.0 引理知道,存在有限操作X1,g_2状态可以变成新的状态g_3,然后拥有性质w(g)={0,0,...,0}.
3.至此就集齐了e状态的4个充要条件。
4.也就是说,当前假设的情况g∈G成立。
4. 对于棱块和角块方向不变时的情况g,即w(g)={0,0,...,0},v(g)={0,0,...,0},即缺了e的前2个条件的情况。看能不能再独立出一条充要的引理。
要证明状态g属于群G,当前证明目标变成新目标:
g可以通过若干Actions复合操作变成还原状态e接口。
也就是通过若干Actions复合后,能拥有性质σ(g)=id,ρ(g)=id。
这种情况的状态的全体记为
H':即w(g)={0,0,...,0},v(g)={0,0,...,0}的H中的状态。也就是棱块和角块方向数不变时的情况。只可能改变位置。
然后定义一个交集G',
G' := H' ∩ G
我们下面将给出3个这样的G'中的元素,他们当然满足:
1.不改变全体方向数,即w(g)={0,0,...,0},v(g)={0,0,...,0}
然后通过这3个操作的复合将任意一个G'中的方向分量全为0的状态A1,变换到原始状态e,这就解决了我们的新目标。
41.g3 = RU'RURURU'R'U'R^2 (即R U' R U R U R U' R' U' R R): 是一个棱块位置3循环,也就是σ(g3) =(1,2,4)。方向数都是0。
4.2.第二个g4 = R' F' F' F' R' B B R' R' R' F' R' B B R' R',是一个角块位置3循环, ρ(g4) =(2,4,3)
4.2.错误的?第二个g4_2 = LF'LD^2L'FLD^2L^2 :是一个角块位置3循环, ρ(g4) =(4,5,6)
4.3.第三个g5 = RUR'F'RUR'U'R'FR^2U'R'U'(即R U R' F' R U R' U' R' F R R U' R' U')
:2个2循环,2个棱块的2循环,2个角块的2循环σ(g5) =(1,2) ρ(g5) =(2,3)
下面将描述方向不变,只有位置变化时,如何变成e:
4.4 An :Sn置换群中,是偶的那些元素(即偶置换),这些组成的群。也称为“n元交错群”。
元素个数是Sn的一半,即1/2,记为|Sn/An|=2 ???--todo
4.5 N:由G'中的全体元素,抽取2个位置变换拼成的的向量,向量里有两项内容(分别是12项向量,和8项向量),
从定义知: N={(σ(g) , ρ(g)) |g∈G' } < SE×SV。(备忘:N定义中的g∈G', g不会改变全体块的方向数)
4.6 小引理:假设n>=3,对于任意集合M,M包含Sn中全体3循环,则=>: M >= An
证明:因为P.180的9.4.1(用到P.56的引理3.4.1),即Sn中全体3循环元素生成的群,就是An。
因此M中只抽出Sn中的全体3循环,就能生成An了M集合肯定就>=An集合了。
以此为前提,我们可以把A8 = <S8中的所有3循环> , A12 = <S12中的所有3循环> ,
4.7 小引理:N >= AE×{(1)}, 因为N中元素是这样的形式(σ(g) , ρ(g)),所以可以把目标转化成新目标:
{N中符合ρ(g) = id的那些元素(这类元素是存在的,比如例子g3),将这些元素的集合,记为Y1,Y1={(σ(g),(1))|g满足:ρ(g) = id, g不改变全体块的方向数}
则=>: Y1中的全体元素都列举出第一个向量σ(g),组成一个集合Y2,Y2会满足: Y2 >= AE。
}
证明:
1. ((1,2,4),(1)) ∈ N ,换句话说,N中有这个向量((1,2,4),(1)),为什么呢?:
因为对应这个向量的g∈ G' , 是存在的,比如g3就是一个。
2.小引理:任意H'中的元素X1,假设X1存在满足这样的形式:((i,j,k),(1)),(这样的形式的确存在的,举例:g3,但是否能任意取i,j,k,还不确定),
换句话说,就是棱块位置是某个3轮换,角块位置不变,棱块和角块方向数为0。
则=>: X1状态能经过有限次G'中的操作,得到状态e ∈ G。
证明:
这里的证明其实就是给出这个有限次G'中的操作,记为G1
所以下面通常要涉及分类讨论(i,j,k)中3个分量的相对位置,具体步骤:
注意:这里用到的操作是g3,g4,g5,X1^(n)X2X1^(-n)(交换子中X1是{L2,R2,F,B,U,D}复合的)因为这样的集合保证了方向数不会改变,而且角块位置不变。
0.1. 交换子公式小引理:X1X2X1^(-1)这类的操作,假设X1取的是Actions的复合,X2取的是棱块3循环集合的元素,这里特指{g3},
记g3影响到的棱块位置为第i,j,k,这个3循环记为(i,j,k),则=>:
X1X2X1^(-1)的操作,不改变全体角块方向数和位置。
全体棱块方向数可能会变化的。
因为已知任意状态g,通过X1操作后,会有所影响的棱块位置集合,记为E1 = {l1,l2,l3,...},
X1操作效果是:{l1=>m1,l2=>m2,l3=>m3,...}
则=>:
{
1.如果E1中只存在一个初始位置为l1,通过X1操作后到达集合{i,j,k}中任意一个的,则=>:,
假设是{i,j,k}中的i
X1X2X1^(-1)的操作的结果会是一个不改变全体角块方向数和位置,这样的3棱块循环:
(i,j,k) → (l1,j,k) →(X2作用) → (k,l1,j), 也就是(k,l1,j)这样的新的3棱块循环,但全体棱块方向数可能改变。
{i,j,k}的其他情况类推可知:
假设是{i,j,k}中的j:(i,j,k) → (i,l1,k) →(X2作用) → (k,i,l1)这样的新的3棱块循环,但全体棱块方向数可能改变。
假设是{i,j,k}中的k:(i,j,k) → (i,j,l1) →(X2作用) → (l1,i,j)样的新的3棱块循环,但全体棱块方向数可能改变。
2.其他情况的定理目前先不探究:略。
}
证明:分类讨论:
{
1.对于全体角块:{
1.对于方向数:
先执行X1,这一步肯定有可能修改方向数的,设影响到方向数的4个位置是第{P1,P2,P3,P4,...,Pn},(先记这4个位置的执行这一行前的方向数分别是a1,a2,a3,a4,...an)
设改变的详细是{P1:a1→b1,P2:a2→b2,P3:a3→b3,P4:a4→b4,...Pn:an→bn},把这个过程记为函数f1,方向数分别变成了。
然后执行X2时已知不改变全体角块的方向数,这一步结束后,对于P1,P2,P3,P4,...,Pn来说,都没改变方向数,还是b1,b2,b3,b4,...,bn。
然后执行X1^(-1),对于P1,P2,P3,P4,...,Pn的方向数,相当于执行了一次f1^(-1),即f1的逆映射,
分别改变详细是:{P1:b1→a1,P2:b2→a2,P3:b3→ba,P4:b4→a4,...Pn:bn→an},因此又变回了a1,a2,a3,a4,...an方向数,因此不变。
2.对于位置:
先执行X1,这一步肯定改变位置的,设影响到的4个角块记为{V1,V2,...,Vn}。(执行这一行前这4个角块的位置分别记为第a1,第a2,...,第an)
设改变的详细是{V1:第a1→第b1,V2:第a2→第b2,...,Vn:第an→第bn},把这个过程记为函数f2,位置分别变成了第b1,第b2,...,第bn。
然后执行X2,已知不改变全体角块的位置,这一步结束后,对于V1,V2,...,Vn来说,都没改变位置,还是第a1,第a2,...,第an。
然后执行X1^(-n),对于V1,V2,...,Vn的位置,相当于执行了一次f2^(-1),即f2的逆映射,
分别改变详细是:{V1:第b1→第a1,V2:第b2→第a2,...,Vn:第bn→第an},因此又变回了第a1,第a2,...,第an的个位置,因此不变。
}
已知任意状态g,通过X1操作后,会有所“影响”(有动的都是)的棱块位置集合,记为E1 = {l1,l2,l3,...},X1操作效果是:{l1=>m1,l2=>m2,l3=>m3,...}
如果E1中只存在一个初始位置为l1,通过X1操作后到达集合{i,j,k}中的任意一个。
2.分类讨论:{
1.如果只有l1操作X1后到达了位置j:分类讨论棱块位置:--
{
注意这里全体棱块 = {i,j,k} + {E1 - j} + {E1 + i + k}外的全体棱块
换句话说= E1 + {i,k} + {E1 + i + k}外的全体棱块
1.对于{E1 + i + k}外的全体棱块:这个集合中任意一个元素,作分析:
由于X1操作改变了E1中的位置和方向,
但X2没有对E1中任何位置和方向发生变化,
所以X1^(-1)操作后E1中的位置和方向就还原了。
2.对于X1操作前的位置{i,k}的这两个棱块:
由于只有j被到达了,换句话说,{i,j,k}只有j收到了X1操作的影响,因此操作X1后{i,k}的方向和位置不变
操作X2后,位置变化:{第i→第j,第k→第i}
然后操作X1^(-1):
分类讨论:{
1.X1操作前的位置i:因为经过X2后移到了第j,会涉及方向和位置变化:
由于X1的位置操作变化有:{第l1→ 第j}
因此通过X1^(-1)操作后,当前分析的棱块位置会变到第l1。
2.X1操作前的位置k:因为经过X2后移到了第i,不受X1^(-1)的变化影响,方向数和位置不变。
}
总结就是:{第i→第l1,第k→第i}
3.对于X1操作前的位置E1这些棱块:分类讨论:
{
1.对于第l1位置的棱块:
X1操作改变了方向和位置,位置到了第j位置,
X2操作改变了方向和位置,位置到了第k位置,
X1^(-1)操作后,由于X1的作用范围集合E1,和X2的作用范围集合{i,j,k}只有交集第j位置,
而目前分析的棱块到了第k位置,不会收到X1的作用影响,保持第k位置。
总结这个棱块的变化:{第l1→第k}
2.对于第j位置的棱块:
X1操作改变了方向和位置,位置到了某个位置记为第j_2 ≠ 第j,方向数记为v_2,j_2在X1影响范围内,即j_2∈ E1
由于X1的作用范围集合E1,和X2的作用范围集合{i,j,k}只有交集第j位置,这个j_2 ∉ {i,j,k}
X2操作中,由于j_2 ∉ {i,j,k},当前棱块的方向和位置不变,位置还是第j_2,方向数还是v_2。
X1^(-1)操作中,方向数得到了还原,位置也因此得到还原。
总结变化:{第j→第j}
3.E1除了第l1位置,还有除了第j位置以外的棱块:
X1操作改变了方向和位置,
但X2不改变方向和位置,因为E1中只有l1到达了X2的作用区域中。
因此X1^(-1)操作后目前分析的这些“E1除了第l1位置,还有除了第j位置以外的棱块”就恢复了原来的方向和位置。
}
}
总结上面得到仅有的3个位置变换的:{第i→第l1,第k→第i},{第l1→第k},
合并起来就是{第i→第l1,第k→第i,第l1→第k} ,写成3循环就是(i,l1,k) = (k,i,l1),得证。
2.如果l1操作X1后到达了位置j:类似推理
3.如果l1操作X1后到达了位置k:类似推理
}
}
0.2. 推论:直接使用0.1引理,但是再加一个假设:全体棱块方向数不变化,即要求X1不改变方向数
(有一个方法很容易满足X1不改变方向数,只要组成它的元素都在这个集合中即可,当然也有其他集合可以:{L2,R2,F,B,U,D})
则=>:
使用0.1引理得到的“3循环,但全体棱块方向数可能改变”,就可以变成单纯的3循环。换句话说,就是保证了全体棱块方向数不变。
1.首先把棱块还原成e:
g3:R U' R U R U R U' R' U' R R
σ(g3) =(1,2,4)
目标:任意棱块3循环(棱块方向数为0,角块位置为id),可以用g3和g3变式和交换子模式还原成e。
(硬要一个个列举的话,12个选3循环有220中不同的。)
证明:
1.要对这3循环的位置进行分类,首先为了不失一般性,
把其中一个棱块E1放在人的正面朝上的位置,
换句话说,就是把E1当作“UF”位置,建立新的坐标系,但实际上不是我们之前坐标系的那个UF,
现在只是相对而言。
2.然后对剩下的E2,E3的位置分类讨论即可:
或者直接对E1,E2,E3进行全体分类
{
1.1个面包含了3个棱块,这样的面有1个的情况:
{
1.3个棱块在U面:
1.逆时针顺序是E1,E2,E3:使用若干次g3变式,将E1先恢复,其他自动也会恢复。因此得到e。
2x.逆时针顺序是E1,E3,E2:这样的状态经过若干次g3变式,现将E1恢复原位置后。发现还有E2,E3没有恢复。
这样的排列不是3循环,是2循环。因此这种情况不应该在讨论范围内,是一个“伪3循环”。
2.3个棱块在F面:
{
1.1,5,6:2次交换子。
2.1,5,9:2次交换子。
3.1,6,9:2次交换子。
}
}
上述1除外的情况里,还有:
2.1个面包含了2个棱块,这样的面有3个的情况:
{
1.E1,E2,E3在{1,2,6}中取:交换子要用到中层变换。
2.E1,E2,E3在{1,4,5}中取:由于对称性,归化为{1,2,6}。
}
3.1个面包含了2个棱块,这样的面有2个的情况:
{
1.3,1,9:交换子。
2.1,3,11:交换子。
3.1,3,7:用到中层的交换子。
4.1,3,8:由于对称性,和1,3,7情况类似。
5.1,4,8:交换子。
6.1,4,12:交换子。
8.1,2,X:归化为1.4.X
9.1,2,X:归化为1.4.X
下面的由于对称性都可以归化成上面的情况:
10.1,5,X:归化为1.4.X
11.1,6,X:归化为1.2.X
12.1,9,X:归化为1.3.X
}
4.1个面包含了2个棱块,这样的面有1个的情况:
{
1.1,3,{9,10,11,12}:由对称性,12的情况归化到10,11的情况归化到9。所以只需讨论:
{
1.1,3,10:交换子。
2.1,3,9:交换子。
}
}
5.1个面包含了2个棱块,这样的面有0个的情况:
首先筛选剩下了这些可供E2,E3选择{BL,DL,BR,DR,BU,BD,DF} = {8,12,7,10,3,11,9}:
由于对称性,BL→BR,DL→DR,BU→DF,BD , 即{7,10,9,11}
E2从这4个归化的里面选:
{
1.7:
{
12:2次交换子
}
2.10:
{
8:2次交换子
}
3.9:
{
7,8都可以,由于对称性8→7
7:交换子。
}
4.11:
{
因为放下第3个的话,必然不符合“1个面包含了2个棱块,这样的面有0”的性质。所以不能归类到这里,必然归化到其他某一个分类。
}
}
}
2.然后把角块还原成e:
g4: R' F' F' F' R' B B R' R' R' F' R' B B R' R'
ρ(g4) =(2,4,3)
目标:任意角块3循环(角块方向数为0,棱块位置为id),可以用g4和g4变式和交换子模式还原成e。
(硬要一个个列举的话,8个选3循环有56中不同的。)
证明:
1.要对这3循环的位置进行分类,首先为了不失一般性,(不严谨,比如(5,6,7))
把其中一个角块V1放在人的正面朝右上的位置,
换句话说,就是把V1当作“UFR”位置(2),建立新的坐标系,所以实际上不是我们之前坐标系的那个UFR,
现在只是相对而言。
2.然后对剩下的V2,V3的位置分类讨论即可:
或者直接对V1,V2,V3进行全体分类:
{
1.1个面包含了3个角块,这样的面有1个的情况:
{
1.3个角块在U面:
{
1.V1,V2,V3逆时针排列:执行若干次g4变式,将V1先恢复,则其他也跟着恢复。得到e。
2.V1,V2,V3顺时针排列:执行若干次g4变式,将V1先恢复,发现其实是2循环,所以不在目前分类中。不属于V1,V2,V3的3循环。
}
2.3个角块在F面:交换子。
3.3个角块在R面:交换子。
}
上述1除外的情况里,还有:
2.1个面包含了2个角块,这样的面有3个的情况:
{
1.2,1,X:分类:
{
2,1,7: 交换子。
2,1,8: 交换子。
}
2.2,4,X:分类:
{
2,4,8: 3次交换子。
2,4,5: D' (2,4,8) D 即可。
2,4,7: D' (2,4,6) D 即可。
2,4,6: 3次交换子。
先搞一个(2,3,6)交换子,记下来:D' L L g4 L L D
复原,使用(2,4,3)
然后使用(2,3,6) 2次?,把3还原,
最终得到(2,4,6): g4 (D' L L g4 L L D) (D' L L g4 L L D)
简化成了:R R D D L L D R R D' L L D R R D R R
}
3.2,3,X:
{
2,3,5:交换子。
2,3,8:交换子。
}
4.2,7,X:
{
2,7,1:上面已存在。
2,7,4:上面已存在。
2,7,5:L L (2,4,7) L' L'即可。
2,7,8:L L (1,2,7) L' L'即可。
}
5.2,6,X:
{
2,6,4:上面已存在。
2,6,8:B B (2,6,7) B' B'即可。
}
6.2,5,X:
{
2,5,4:上面已存在。
2,5,3:上面已存在。
2,5,7:上面已存在。
2,5,8:B B (2,5,4) B' B'即可。
}
7.2,8,X:
{
2,8,1:上面已存在。
2,8,3:上面已存在。
2,8,4:上面已存在。
2,8,5:上面已存在。
2,8,6:上面已存在。
2,8,7:上面已存在。
}
}
3.1个面包含了2个角块,这样的面有2个的情况:
{
1.2,1,X: 不存在
2.2,4,X: 不存在
3.2,3,X: 不存在
4.2,7,X: 不存在
5.2,6,X: 不存在
6.2,5,X: 不存在
7.2,8,X: 不存在
}
4.1个面包含了2个角块,这样的面有1个的情况:
{
不可能存在这种情况。
}
5.1个面包含了2个角块,这样的面有0个的情况:
{
不可能存在这种情况。
}
}
2.1 小引理推论***:如果从e出发,复合一些G中的交换子和g3变式和g4变式,则=>:
能经过有限次G'中的操作,得到((i,j,k),(1)),其中第一个分量(i,j,k)满足:1<=i<=j<=k<=12。
而且留意一下,全体棱块和角块的方向数不变,全体角块的位置也不变。
换句话说,对于任意1<=i<=j<=k<=12,得到的这个变量(i,j,k),也就是任意的S12中的任意3循环的状态,都能从((1,2,4),(1))经过有限次G'中操作,得到第一个分量能变成这个任意的3循环。
--todo
3.总结:
目标问题:g∈ H , 则=>: g∈G 吗?
3个条件中第一个把H针对位置先分类,也就是针对(S8 X S12)分成了两个集合,分类讨论:
对于状态g∈H
1.有一个3.0小引理,由条件(2),即有求和棱块模2为0,因此g可以通过有限G中步骤,这里记为X1,得到新的性质:w(gX1) = {0,0,...,0}。
而且不改变角块的方向数,因此保持了条件(3)。
2.有一个5.1小引理,由条件(3),即求和角块模3为0,因此g·X1可以通过有限G中步骤,这里记为X2,得到新的性质:v(gX1X2) = {0,0,...,0}。
3.我们先介绍一些通用的已知知识:(S8 X S12)有一个“子群”,记为G1:(A X B),(A X B)= (A1 X B1)∪ (A2 X B2) ,换句话说就是(奇X奇)∪(偶X偶)这个并集。
其中A1是S8中全体奇的置换,A2是S8中全体偶的置换,
B1是S12中全体奇的置换,B2是S12中全体偶的置换。
很明显,这两个集合(A1 X B1),(A2 X B2) 是没有交集的。
可以证明这个子群是封闭的。因为(奇X奇)+(偶X偶) = (奇X奇)
3.1 同样用是否符合条件(1)来将H分成两个子集H1,H2的话。记符合条件(1)的为H1,不符合的为H2。其实这个H1就是G1, H1 = G1,因为H1和G1的定义是一样的。
H1经过P映射就是(A X B);
H2经过P映射就是 (S8 X S12) - (A X B);
4.由条件(1),g有性质:棱和角的位置排列的符号数相等,换句话说就是(奇X奇) or (偶X偶)。
所以:g属于3.1中的H1,g'是属于3中所说的(A X B)这个子群的。
即g∈H1,g'∈(A X B)
根据3的分析可知G1=H1是一个(S8 X S12)的子群,g∈H1,g经过X1,X2后变成了新状态gX1X2,这里记为g2。
因此可以把当前目标g∈G,转化成新的目标:g2∈ G。(因为X1,X2都是G中元素)
5. (S8 X S12)可以分成4个不相交子集的并集:奇X奇 ∪ 偶X偶 ∪ 奇X偶 ∪ 奇X偶。
这4个子集的元素个数都相等,因为An(偶置换)是Sn的指数为2的子群。Sn除了An的剩下的当然都是奇置换。
6.分析g2具有性质:w(g2) = {0,0,...,0},v(g2) = {0,0,...,0}。而且对g2经过P映射后的g'(仍然是g',因为g到g2只改变了方向数)。
7.右推左过程中,条件(1)让我们把g'的范围进一步缩小了,条件(1)换句话说,就是角块和棱块的排列的符号相等。
换句话说,角块的排列和棱块的排列,同为奇,或者同为偶。因此g'∈ 奇X奇 ∪ 偶X偶 。
8.我们这里把 (S8 X S12)分成两个子集,它们的元素个数相等。分别是
1.(奇X奇 ∪ 偶X偶),记为J1;
2.(奇X偶 ∪ 偶X奇),记为J2。
由3.1分析可知,H1经过P映射得到J1,H2经过P映射得到J2
9.G通过映射P得到集合G',由于我们已证明左推右,当然可以用。所以G中的元素都是满足条件(1)的性质:“角块的排列和棱块的排列,同为奇,或者同为偶”。
因此G'属于8中定义的J1。
10.由于2.1小引理推论,g_E124和g_E123可以生成所有的g_E???(方向数w,v都是全零,角块位置是id) 3循环,也就是(id)Xg_E???
类似的某个引理,g_V456可以生成所有的g_V???(方向数w,v都是全零,棱块位置是id) 3循环,也就是g_V???X(id)
11.小引理:无前提假设,则=>,g_E???和g_V???可以与G中元素复合生成({A8},{A12},id,id)这样的任意元素。
证明:由于({A8},{A12},id,id) = ({A8},(id),id,id) + ((id),{A12},id,id) , 这里的写法不太严谨,换句话说,({A8},{A12},id,id)这个集合里面任意的一个元素,
比如(a1,a2,id,id) = ((b1,b2,...,b8) ,(c1,c2,...,c12),id,id)
则由g_E???复合运算得到元素C1:((b1,b2,...,b8) ,(id),id,id)
g_V???复合运算得到元素D1:((id),(c1,c2,...,c12),id,id)
将D1作用到魔方状态C1上,就得到了:((b1,b2,...,b8) ,(c1,c2,...,c12),id,id),也就是({A8},{A12},id,id)中的任意一个元素。
12.小引理:g2是否一定能经过有限步G中操作,得到集合({A8},{A12},id,id)中的某一个元素
对g2的前两个排列的奇偶性进行分类讨论,条件(1)把g2的范围缩小成了(奇X奇) or (偶X偶):分类讨论:
{
1.g2的前两个排列的奇偶性是奇,奇:详细步骤:
先执行一次g5,g5保持了棱和角方向数不变,保持id,id。
然后将前两个排列的奇偶性都变换了,因此g2g5的前两个排列的奇偶性是偶,偶,因此转化成下面第2种情况。
2.g2的前两个排列的奇偶性是偶,偶:由引理11,G中元素可以复合得到({A8},{A12},id,id),换句话说,由于g2∈ ({A8},{A12},id,id),所以g2同样可以被G中元素可以复合得到。
}
至此,新目标g2∈ G证明完毕。
}