我不想背公式,但是想一分钟学会在魔方圈中假装高手的教程:

魔方还原3次降群法的理论基础:

6.降群法:逐步掉入更小的子群,掉入不同生成集生成的子群(换句话说,就是掉入一个新的状态集合,这个新的状态集合只需生成集中元素就能复合得到)。
7.1 G = <L,R,F,B,U,D>
7.G1 = <L^2,R^2,F,B,U,D> 具有性质:
    1.不改变任何棱块的方向。
8.关于G1的命题1:∀g∈ G,
    g∈G1
    ↔
    wi(g)=0 , ∀i , 1<=i<=12
    证明:
    (换句话说:右推左其实也就是说,棱块方向都没变的状态,可以通过G1的生成集来生成。)
    左推右:
    {
        对g的操作长度作归纳:
        1.首先g的长度为1验证:只需要验证G1( <L^2,R^2,F,B,U,D>)中的6个生成元,都满足。
        2.假设对于任意长度为k的时候成立,也就是:wi(X_1X_2...X_k) = 0 , ∀i , 1<=i<=12
        3.验证长度为k+1的时候,也就是g=X_1X_2...X_kX_(k+1) , 需要验证:wi(X_1X_2...X_kX_(k+1)) = 0 , ∀i , 1<=i<=12
        4.由于之前的类同态定理,我们已知w(X_1X_2...X_kX_(k+1)) = w(X_1X_2...X_k) + σ(X_1X_2...X_k)^(-1)·w(X_(k+1))
        5.因此需要验证的目标,变成新的目标:wi(X_1X_2...X_k) + [σ(X_1X_2...X_k)^(-1)·w(X_(k+1))]_i  , ∀i , 1<=i<=12
        = [σ(X_1X_2...X_k)^(-1)·w(X_(k+1))]_i  , ∀i , 1<=i<=12   因为假设3,X_1X_2...X_kX_(k+1)的所有分量都是0,换句话说就是wi(X_1X_2...X_k) = 0
        = 0 , ∀i , 1<=i<=12   因为w(X_(k+1))的每个分量都是0,不管怎么重新排列,还是全零。
    }
    右推左:
    {
        0.已知wi(g)=0 , ∀i , 1<=i<=12,换句话说,棱块的方向数全部为0。
        0.1 g∈G,也就是g是可还原魔方群的一个元素。(换句话说,可以使用魔方第二基本定理)
        1.由于目标是要推出g∈G1,换句话说,换成新的目标:就是g状态可以通过G1中的元素复合得到e。
        2.给出不改变全体位置的前提,只单纯还原全体角块的方向数的操作步骤:
            1.关键公式:h1 = (D' L L D B' R R B)^2 ,效果:4号方向数+1,6号方向数+2
            (下面应该不止用到h1,还会用到一些包含h1的交换子公式)
            2.(涉及U,h1)先依次还原这些角块的方向数为0:1号块,2号块,3号块。故意留一个4号块。
            3.(涉及D,h1)先依次还原这些角块的方向数为0:5号块,8号块,7号块。故意留一个6号块。
            4.最后执行若干次h1,使得4号方向数变成0后。此时只剩一个2号块方向数不一定还原为0。
            5.此时对目前状态进行分析,因为目前状态依然∈ G,可以使用魔方第二基本定理的第3条件,角块方向数求和mod 3为0
                因为2号块以外方向数都为0,因此这个2号块方向数也只能满足mod 3为0,因此也是0。
        3.给出不改变全体方向数的前提,只单纯还原全体位置的操作步骤:
            1.关键公式:h2:R R U' F B' R R F' B U' R R: 效果:棱块3位置轮换:(1,2,3)
            2.关键公式:h3:D F' D B B D' F D B B D' L L (D' L L D B' R R B)^2 L L D':效果:角块3位置轮换:(5,4,8)
            3.关键公式:h4:(U' R R)^4 U' (D' F' D B B D' F D B B)^2 (D' L L D B' R R B)^4:
                效果:角块2位置轮换:1↔7
                    + 棱块2位置轮换:2↔10
            4.借用魔方第二基本定理的右推左中的讨论(换句话,这里偷懒不写),必然得到任意棱块3循环,角块3循环。
            因此能生成所有的({A8},{A12},id,id)状态。
            5.由于目前状态∈ G,所以满足魔方第二基本定理中的第一条,角块排列和棱块排列的奇偶性只可能是奇X奇 or 偶X偶。
            6.类似于魔方第二基本定理的右推左中的讨论,奇X奇可以通过执行一次h4,化归为偶X偶的情况,也就是({A8},{A12},id,id)中的一种状态。
            7.因此能被全体3循环生成。
    }

9.G2 = <L^2,R^2,F^2,B^2,U,D> 具有性质:
    1.不改变任何棱块的方向。
    2.不改变任何角块的方向。
    3.而且保持(上下)中层的棱块(5,6,7,8)保持在(上下)中层的四个位置(5,6,7,8)上(也可以称作轨道)。
10.关于G2的命题2:∀g∈ G1,
    g∈ G2
    ↔
    {
        1. vi(g)=0 , ∀i , 1<=i<=8
        2. σ(g)作用到 {5,6,7,8}这4个棱块后,这4个棱块仍然全都在位置{5,6,7,8}上,
            换句话说,这4个棱块经过g变换后保持在(上下)中层里。
    }
    证明:
    左推右:
    {
        对g的操作元素数量l作归纳:
        1.首先对l=1时验证v:只需要验证G2的6个生成元都符合。
        验证保持轨道{5,6,7,8}:只需要验证G2的6个生成元都符合。
        2.然后假设任意l=k时成立,也就是:
        vi(X_1X_2...X_k)=0 , ∀i , 1<=i<=8
        还有,
        σ(X_1X_2...X_k)这个排列的结果使得保持轨道{5,6,7,8}
        3.现在验证l=k+1的情况,g=X_1X_2...X_kX_(k+1) ,也就是目标:
            1.目标:vi(X_1X_2...X_kX_(k+1))=0 , ∀i , 1<=i<=8
            证明:由于类同态定理,v(X_1X_2...X_kX_(k+1)) := v(X_1X_2...X_k) + ρ(X_1X_2...X_k)^(-1)·v(X_(k+1))
                由于假设,我们已知:v(X_1X_2...X_k) = (0,...,0) (8个项)
                所以 vi(X_1X_2...X_kX_(k+1)) = [ρ(X_1X_2...X_k)^(-1)·v(X_(k+1))]_i , ∀i , 1<=i<=8
                = 0 由于v(X_(k+1))的分量每一项都是0,如何重新排列还是全零。
            2.目标:σ(X_1X_2...X_kX_(k+1))使得保持轨道{5,6,7,8}
            证明:由于假设,已知:σ(X_1X_2...X_k)这个排列的结果使得保持轨道{5,6,7,8}
            由于我们知道X_1X_2...X_kX_(k+1)的排列效果,相当于,↔ 先作用X_1X_2...X_k的排列效果,然后再作用一次X_(k+1),其实就是σ的“同态”性质。
            所以我们得到σ(X_1X_2...X_kX_(k+1)) = σ(X_1X_2...X_k) · σ(X_(k+1))
            因为两次效果都保持轨道{5,6,7,8},因此合并效果σ(X_1X_2...X_kX_(k+1)) 也保持轨道{5,6,7,8}。
    }
    右推左:
    {
        0.已知g∈ G1, 目标是证明g∈ G2,换句话说,可以换个目标:只用G2中的复合操作,使得g还原成状态e。
        1.由假设知vi(g)=0 , ∀i , 1<=i<=8
        2.由假设知已知 σ(g)作用到 {5,6,7,8}这4个棱块后,这4个棱块仍然全都在位置{5,6,7,8}上,
            换句话说,这4个棱块经过g变换后保持在(上下)中层里。
        3.由g∈ G1,上一个命题的充要条件知:wi(g)=0 , ∀i , 1<=i<=12
        4.现在给出还原成状态e的具体步骤,采取棱块和角块分别还原互不干涉的思路,分类讨论:
            0.由于全体块的方向数都已经还原成0,所以只需要分类讨论棱块和角块的位置还原:
                {
                    这里不做具体步骤,只做大概的步骤分析:
                    1.首先全体块被分成了3个轨道:
                        1.棱块{5,6,7,8} ; 2.棱块除了{5,6,7,8}以外的块 ; 3.全体角块
                    2.要想还原棱块和角块的位置,只需要找到3个轨道分别的一个3循环操作。
                        具体如下:
                        {
                            h5:(R R F F U U)^4 (R R F F)^3 U U (R R F F)^3 U U : {5,6,7,8}的3循环:(5,6,7)
                            h6:(U U F F L L)^4 (U U F F)^3 L L (U U F F)^3 L L: 棱块除了{5,6,7,8}以外的块的3循环:(1,3,9)
                            h8:R R U L L U' R R U L L U':全体角块的3循环: (7,2,8)
                        }
                    3.这些3循环可以通过交换子引理变换成任意的3循环。
                    4.还原步骤就是让3个轨道用这些3循环公式,最后分别留下2个没有还原的。也就是6个块没有还原位置。
                    5.然后其实还需要2个轨道之间的同时2循环公式即可,因为轨道之间的同时作用使得其中1个轨道已经还原位置,
                        作用2次后,最后只剩下一个轨道的2个块不确定是否已经还原位置,这时候用魔方第二基本定理的条件(1)可以肯定,
                        这两个剩下的块一定会被动的还原了,不需要再操作。
                        具体如下:
                        {
                            h7:(R R U U)^3 :棱{5,6,7,8} 与 棱{1,2,3,4,9,10,11,12}轨道的同时2循环:1↔3, 6↔7
                            h9:(U' R R)^4 U U D R R U L L U' R R U L L D' :棱{1,2,3,4,9,10,11,12}轨道 与 全体角块 的同时2循环:角1↔4, 棱2↔10
                            h10:(U' R R)^4 U U D R R U L L U' R R U L L D' R R U D' (U U F F L L)^4 (U U F F)^3 L L (U U F F)^3 L L D U' R R (U U F F)^3
                            :棱{5,6,7,8}轨道 与 全体角块 的同时2循环
                                等价操作:L' L' U B' B' U' U' R' R' U' R' R' U F' F' D L R F' F' U' U' L' R U'
                                :角1↔4, 棱5↔6
                        }
                }
    }
11.1. G = <L,R,F,B,U,D> → G1 = <L^2,R^2,F,B,U,D>  → G2 = <L^2,R^2,F^2,B^2,U,D> → G3 = <L^2,R^2,F^2,B^2,U^2,D^2>
11.G3 = <L^2,R^2,F^2,B^2,U^2,D^2> 具有性质:
    1.不改变任何棱块的方向。
    2.不改变任何角块的方向。
    3.棱块保持轨道: {5,6,7,8}。
    4.棱块保持轨道:{1,3,9,11},{2,4,10,12}。
    5.角块保持轨道:{1,3,6,8},{2,4,5,7}。
    6*.一个否命题:不会产生角块位置的三轮换,具体来说就是{1,3,6,8},{2,4,5,7}这两个角块的轨道中,不包含三轮换。
12.关于G3的命题3:∀g∈ G2,
    g∈ G3
    ↔
    {
        1.棱块有2个轨道:{1,3,9,11},{2,4,10,12},当然也有{5,6,7,8}
        2.角块有3个轨道:{1,3,6,8},{2,4,5,7}
        (3错误的?.{1,3,6,8},{2,4,5,7}这两个角块的轨道中,不包含三轮换。
            换句话说,g的效果不能产生这些轨道内的3循环。
            换句话说,g不是单纯的棱块3循环(不变全体块的方向数,不变角块的位置))
        3.与这个白色面心块颜色不一样的角块的个数,记为Count,Count是偶数。这里先特指白色面中,和白色不一样的角块的(白色的)个数Count,Count是偶数个。
    }
    证明:
    关键公式:
    {
        h11:(R^2F^2)^3 :两个轨道的棱块2循环 :1↔9, 2↔10
        h14:(L^2U^2)^3 :即(L L U U L L U U L L U U):两个轨道的棱块2循环 :5↔8, 1↔3
        h17:L L B B F F R R D' L L B B F F R R U: 两个轨道的棱块2循环 :1↔3, 2↔4
        h18:L L B B F F R R D L L B B F F R R U:两个轨道的角块2循环 :1↔3, 2↔4
        --
        h12:(R^2F^2)^3(R^2B^2)^3 :一个轨道的棱块2循环(可变式成另一个轨道) :1↔9, 3↔11
        h15:F^2U^2D^2B^2U^2D^2:即F F U U D D B B U U D D:一个轨道的棱块2循环:5→6,7↔8
        --
        h13:(R^2F^2U^2)^4(R^2F^2)^3U^2(R^2F^2)^3U^2 : R R F F U U R R F F U U R R F F U U R R F F U U R R F F R R F F R R F F U U R R F F R R F F R R F F U U :
            一个棱块轨道的3循环:(5,6,7)
        h16:F^2L'RU^2LR' :(即F F L' R U U L R'):一个棱块轨道的3循环:(1,9,3)
    }
    左推右:{
        0.由于g∈ G2, 所以已知:
            1. vi(g)=0 , ∀i , 1<=i<=8
            2. σ(g)作用到 {5,6,7,8}这4个棱块后,这4个棱块仍然全都在位置{5,6,7,8}上,
            换句话说,这4个棱块经过g变换后保持在(上下)中层里。
        1.首先证明棱块保持轨道{1,3,9,11}:只需要验证G3生成元6个都符合就行。
        2.证明棱块保持轨道{2,4,10,12}:只需要验证G3生成元6个都符合就行。
        3.证明角块保持轨道{1,3,6,8}:只需要验证G3生成元6个都符合就行。
        4.证明角块保持轨道{2,4,5,7}:只需要验证G3生成元6个都符合就行。
        5.小引理:G3使得任意一个面,与这个面心块颜色不一样的角块的个数,记为Count,Count是偶数。
            这里先特指白色面中,和白色不一样的角块的(白色的)个数Count,Count是偶数个。
            证明:
            1.定义c:c(g)是8项的向量,每一项只能取0或1,每一项代表角块i在新坐标下U或D面的颜色数增加量(结果要mod 2),0代表白色,1代表黄色。可以记为c(g)=(c1(g),c2(g),...,c8(g))
            2.小引理:c(gh) = c(g) + ρ(g)c(h)
                证明:类似类同态定理的证明过程。
            3.对g的长度做归纳:
            0.对于g= X_1X_2...X_kX_(k+1)
            1.对于g长度为1的情况:只需要检查6个G3中生成元即可。
            2.假设:对于k成立,也就是已知:∑(上4,下i=1)ci(X_1X_2...X_k) = 0 (mod 2),(而且也知道反面:∑(上8,下i=5)ci(X_1X_2...X_k) = 0 (mod 2))
            3.现在检查k+1的情况:∑(上4,下i=1)ci(X_1X_2...X_kX_(k+1))
            4.由于小引理2,可知c(X_1X_2...X_kX_(k+1)) = c(X_1X_2...X_k) +  ρ(X_1X_2...X_k)c(X_(k+1))
            5.所以3中的检查目标,可以化归为:∑(上4,下i=1)[ci(X_1X_2...X_k) +  (ρ(X_1X_2...X_k)c(X_(k+1)))_i]
            = 0 + ∑(上4,下i=1)(ρ(X_1X_2...X_k)c(X_(k+1)))_i (mod 2) 因为代入k的假设
            = 0 (mod 2)为什么呢?
                为什么∑(上4,下i=1)(ρ(X_1X_2...X_k)c(X_(k+1)))_i = 0 (mod 2)?
                证明:
                    c
                L2: XXXXXXXX
                R2: XXXXXXXX
                F2: XXXXXXXX
                B2: XXXXXXXX
                U2: XXXXXXXX
                D2: XXXXXXXX
                --
                对g的长度做归纳:
                1.g的长度为1时:很容易验证U面依然保持偶数个黄色。
                2.假设对于任意长度为m时成立,也就是:∑(上4,下i=1)(ρ(X_1X_2...X_m)c(X_(k+1)))_i = 0 (mod 2)
                3.验证对于m+1的情况:
                设g=X_1X_2...X_mX_(m+1)
                ∑(上4,下i=1)(ρ(X_1X_2...X_mX_(m+1))c(X_(k+1)))_i
                =∑(上4,下i=1) (ρ(X_(m+1))ρ(X_1X_2...X_m)c(X_(k+1)))_i 由于ρ的定义,先作用前m个,再作用1个。效果等同于直接作用“前m个和最后一个的复合”。
                对ρ(X_1X_2...X_m)作用后的状态作分类讨论,mod 2为0只有0,2,4:
                {
                    1.U面有4个黄色:再进行G3中操作X_(m+1)进行位置重排ρ(X_(m+1)),容易一个个验证,一定保持“U面偶数个黄色”的性质。
                    2.U面有0个黄色:再进行G3中操作X_(m+1)进行位置重排ρ(X_(m+1)),容易一个个验证,一定保持“U面偶数个黄色”的性质。
                    3.U面有2个黄色:此时D面也有2个黄色,进行分类讨论:{
                        1.容易验证对G3中的U2,D2是能保持“U面偶数个黄色”性质的。
                        2.剩下L2,R2,F2,B2的操作需要验证“U面偶数个黄色”:{
                            通过分析可知,L2,R2,F2,B2单独一次操作,都能使得U面的黄色保持偶数,
                            对U有2个黄色,D有2个黄色作分类讨论:{
                                由于对称性,不失一般性:
                                U的选择:{12,13,14,23,24,34},D的选择:{56,57,58,67,68,78}
                                0.小引理:G3中的元素,通过有限步内必然能找到返回状态e的操作,且每一步都是G3中的元素。
                                1.对于某些情况,比如12-57,这样的情况为什么g肯定不会是呢?因为:
                                (思路是通过状态g回推所有执行一步G3能到g的状态g_(-n),当然g_(-n)也是G3中的元素才行。)
                                    g_(-1):  "1257" or 2478 ← "1257"
                                    g_(-2): 2347 or "1257" ← "2478" , "1257" or "2478" ← "1257"
                                    g_(-3): None ← 2347 , "1257" or "2478" ← "1257" , "2347" or "1257" ← "2478"
                                    换句话说,“12-57”这种情况往前推n步,只能局限在{12-57,2478,2347,None}
                                    这里None指的是不符合“U面偶数个黄色”的性质的状态。
                                    根据小引理0可知,“12-57”这种情况不可能通过有限步到达状态e且每一步都是G3中的元素。
                                2.其他情况应该也是类似,这里略过。
                            }
                        }
                    }
                }
            到此证明归纳结束。
        6*无关推理:是否存在单纯的角块3轮换?1.是;2.否(只能二选一)。
            因为单纯的角块3轮换:也就是其他块位置不变,方向不变。这种单纯的角块3轮换会导致U面出现黄色的个数为奇数,和小引理5矛盾。因此不存在这样的单纯的角块3轮换。
    }
    右推左:{
        1.换成新目标:g可以用G3中的生成元素复原回状态e。
        2.已知G2和G3中元素不会改变方向数,所以以下只需要分析位置即可。
        因此换成新目标:g的角块位置可以通过G3还原成原始排列位置,g的棱块可以通过G3还原成原始排列位置。
        -- 到底先证明棱块,还是先证明角块呢?角块貌似条件多一点...
        -- 先尝试:先角后棱:
        3.先分析角块的位置,看看如何还原到8个原始的排列位置,详细步骤:
            (思路还未知,可能的思路:1.通过分类讨论,用到假设条件的3,4推理,再还原若干个后,然后排除那些还没还原的情形,
            因此剩下的一定能自动还原。)
            1.首先还原1,4号位置的白色角块:
            1.1号位置白色UFL:
                1.首先{1,3,6,8}轨道肯定有白色,因为:假设(2),这个轨道{1,3,6,8}中保持有2个白色。
                2.将3或6或8号位置的一个白色,先移到6号位置,然后使用U^2即可到达UFL
                至此1个角块位置已还原。
            2.同样4号位置UBL也是类似,从{2,4,5,7}轨道的2个白色中选一个先到达7号位,然后再用B^2到达UBL。
                至此2个角块位置已还原。
            2.然后再还原3号位的白色角块:
            1.由于{1,3,6,8}轨道还有一个白色,这是因为假设(2)。
            2.将3号位置UBR还原白色角块位置:操作也是先到达6号位置然后使用R^2即可到达UBR。
                至此3个角块位置已还原。
            3.然后考虑2号位置的白色角块:
            1.由于{2,4,5,7}轨道中还有一个白色,这是因为假设(2)。
            分类讨论:
                1.如果白色在2号位置:则不需操作,已还原2号位置。
                2.白色在5:则2-黄,7-黄 ; 6-黄,8-黄。
                    1.假设棱块已还原,则棱块排列符号数为0。
                    2.角块原排列是12345678
                    3.现在是1,4,3正确,但是2跑到了5号位:1X3426X8 , 两个X分别是5,7
                    4.因为魔方第二基本定理,棱和角的排列数相等,所以只能是17342658,因为:15342678 =3+1+1=5 ,17342658=5+1+1+1=8,
                    5.分析17342658,有没有可能呢?分析轨道{2,4,5,7},发现这个是一个3循环(7,2,5),使用假设(4),可以退出False,因此白色不在5。
                3.白色在7:
                    由于对称性,和上述推理类似吧?所以白色不在7。
                4.总结:{2,4,5,7}轨道中的剩下的1个白色只能在2,因此U面的白色已经全部还原。
            至此4个角块位置已还原。
            4.然后考虑D面的4个角块的位置:
            “正了”“反了”,分类讨论:
            {
                1.2正:ok
                2.2反:ok
                3.1正1反,1反1正:首先1反1正可以通过h18归化成1正1反,
                    这时候就能使用假设条件3,这种情况是不存在的,只能是其他情况。
            }
        4.分析棱块的位置:
            (思路:此时角块位置已还原,会用到魔方第二基本定理来处理最后一步)
            1.首先由于假设条件,棱块目前满足保持3个轨道:{1,3,9,11},{2,4,10,12},{5,6,7,8}
            --todo--
            2.还原棱块的具体步骤:
            (h11到h18不一定都用到)
            {
                1.先还原棱轨道{5,6,7,8}的位置:通过h13或者h13变式,使得5,6先还原位置。故意留下7,8位置。
                2.使用一次h15,这样棱轨道{5,6,7,8}已经还原位置成功。
                3.剩下的两个轨道{1,3,9,11},{2,4,10,12}
                4.还原轨道{1,3,9,11}位置:通过h16或者“包含h12的交换子”,使得9,11还原位置。故意留下1,3位置。
                5.还原轨道{2,4,10,12}位置:通过h16的变式,已经“包含h16的变式的交换子”,使得10,12还原位置。故意留下2,4位置。
                6.还原轨道{1,3,9,11},执行0次或1次h17,这样{1,3,9,11}肯定能全部位置还原。
                7.现在就剩下2,4位置。这时候我们就可以使用魔方第二基本定理的条件(1),错误的位置,也就是2和4错误,是不可能存在的,所以2和4已经被前面步骤被动还原。
            }

    } 作者:depth_of_Maths https://www.bilibili.com/read/cv31353362/?spm_id_from=333.999.0.0 出处:bilibili

  • 27
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值