atan2f()函数详解

首先要了解一些线性代数的知识,向量积和数量积;atan2f是math库内的函数,而cross求的是向量积的模,dot求的是数量积。

可以通过atan2f()函数求两个向量的夹角,代码如下:

float angle = atan2f(a2.cross(b2), a2.dot(b2));
//这个求的是向量积,二维坐标下也就是一个二阶行列式的计算
    inline float cross(const Vec2& other) const {
        return x*other.y - y*other.x;
    }

//这个求的是数量积
inline float Vec2::dot(const Vec2& v) const
{
    return (x * v.x + y * v.y);
}

然后,我们要知道下面两个公式:

而通过上述的公式可知: arctan(tan⊙)=⊙,而向量积的模除以数量积的模等于tan⊙,经过这样一换算,很简单的就能得出这两个向量之间的角度。

 

 

 

参考资料:https://blog.csdn.net/m0_37316917/article/details/77200577?utm_source=blogxgwz3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

嘿克不黑

你的鼓励是我的最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值