3阶以内的矩阵求逆矩阵的3种手算方法

我们知道求矩阵的逆具有非常重要的意义,本文分享给大家如何针对3阶以内的方阵,求出逆矩阵的3种手算方法:待定系数法、伴随矩阵法、初等变换法(只介绍初等行变换)

1、待定系数法求逆矩阵

首先,我们来看如何使用待定系数法,求矩阵的逆。

举例:

矩阵A=

1 2

-1 -3

假设所求的逆矩阵为

a b

c d

从而可以得出方程组

a+2c=1

b+2d=0

-a-3c=0

-b-3d=1

解得

a=3

b=2

c=-1

d=-1

所以A的逆矩阵A⁻¹=

3 2

-1 -1

2、伴随矩阵求逆矩阵

伴随矩阵解析

 

伴随矩阵是矩阵元素所对应的代数余子式,所构成的矩阵,转置后得到的新矩阵。

我们先求出伴随矩阵A*=

-3 -2

1 1

接下来,求出矩阵A的行列式

|A|

=1*(-3)-(-1)*2 

=-3+2

=-1

从而逆矩阵A⁻¹=A*/|A| = A*/(-1)=-A*=

3 2

-1 -1

3、初等变换求逆矩阵

下面我们介绍如何通过初等(行)变换来求逆矩阵。

首先,写出增广矩阵A|E,即矩阵A右侧放置一个同阶的单位矩阵,得到一个新矩阵。

 1  2  1  0

-1 -3  0  1

然后进行初等行变换。依次进行

第1行加到第2行,得到

 1  2  1  0

 0 -1  1  1

 

第2行×2加到第1行,得到

 1  0  3  2

 0 -1  1  1

 

第2行×(-1),得到

 1  0  3  2

 0  1 -1 -1

因此逆矩阵A⁻¹=

3 2

-1 -1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值