线性代数(三)-逆矩阵

这篇博客探讨了逆矩阵的概念,指出可逆矩阵的唯一性和与行列式的关系。内容包括:A的逆矩阵存在的条件是|A|不等于0,行列式为0的矩阵是奇异矩阵;逆矩阵的运算规则以及如何判断一个矩阵是否为另一个矩阵的逆矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.

 

 

 

 

因A*A=|A|E,可得

 

 

 

 

PS:如果矩阵A是可逆的,则A的逆矩阵是唯一的;

 

2.若矩阵A可逆,则|A|不等于0;反之,若|A|不等于0,则矩阵A可逆,同时

 

当|A|等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值