Jetson nano硬件基础、性能、官方镜像预安装说明

Jetson nano搭载四核Cortex-A57 MPCore 处理器,采用128 核 Maxwell™ GPU。支持JetPack SDK. 支持主流的AI框架和算法,例如TensorFlow, PyTorch, Caffe/Caffe2, Keras, MXNet等。
支持人脸识别,物体识别追踪,对象检测和定位等应用。

技术规格:
名称规格
GPUNVIDIA Maxwell™ 架构,配备 128 个 NVIDIA CUDA® 核心
CPU四核 ARM® Cortex®-A57 MPCore 处理器
内存4 GB 64 位 LPDDR4
存储Micro SD 卡卡槽(需要另购16G以上SD卡接入)
视频编码4K @ 30 (H.264/H.265)
视频解码4K @ 60 (H.264/H.265)
摄像头12 通道(3x4 或 4x2)MIPI CSI-2 DPHY 1.1 (1.5 Gbps)
连接千兆以太网
显示器HDMI 2.0 或 DP1.2
UPHY1 x1/2/4 PCIE、1x USB 3.0、3x USB 2.0
I/O1x SDIO/2x SPI/4x I2C/2x I2S/GPIO
板载资源:

在这里插入图片描述
1、Micro SD 卡卡槽: 可接入TF卡(16G以上),烧写系统镜像
2、40PIN GPIO扩展接口(兼容树莓派40PIN接口)
3、Micro USB接口:用于5V电源输入或者USB数据传输
4、千兆以太网口: 10/100/1000Base-T 自适应以太网端口
5、USB3.0接口:4个USB3.0接口
6、HDMI高清接口:用于外接HDMI屏幕
7、DisplayPort接口:用于外接DP屏幕
8、DC电源接口:用于外接5V电源(外径5.5, 内径2.1)
9、MIPS CSI 摄像头接口:兼容树莓派摄像头接口

性能:

下面这一份表格是NVIDIA官方给出的性能对比表格,以供参考
DNR表示无法运行。

ModelApplicationFrameworkNVIDIA Jetson NanoRaspberry Pi 3Raspberry Pi 3 + Intel Neural Compute Stick 2Google Edge TPU Dev Board
ResNet-50(224×224)ClassificationTensorFlow36 FPS1.4 FPS16 FPSDNR
MobileNet-v2(300×300)ClassificationTensorFlow64 FPS2.5 FPS30 FPS130 FPS
SSD ResNet-18 (960×544)Object DetectionTensorFlow5 FPSDNRDNRDNR
SSD ResNet-18 (480×272)Object DetectionTensorFlow16 FPSDNRDNRDNR
SSD ResNet-18 (300×300)Object DetectionTensorFlow18 FPSDNRDNRDNR
SSD Mobilenet-V2 (960×544)Object DetectionTensorFlow8 FPSDNR1.8 FPSDNR
SSD Mobilenet-V2 (480×272)Object DetectionTensorFlow27 FPSDNR7 FPSDNR
SSD Mobilenet-V2 (300×300)Object DetectionTensorFlow39 FPS1 FPS11 FPS48 FPS
Inception V4(299×299)ClassificationPyTorch11 FPSDNRDNR9 FPS
Tiny YOLO V3(416×416)Object DetectionDarknet25 FPS0.5 FPSDNRDNR
OpenPose(256×256)Pose EstimationCaffe14 FPSDNR5 FPSDNR
VGG-19 (224×224)ClassificationMXNet10 FPS0.5 FPS5 FPSDNR
Super Resolution (481×321)Image ProcessingPyTorch15 FPSDNR0.6 FPSDNR
Unet(1x512x512)SegmentationCaffe18 FPSDNR5 FPSDNR

在这里插入图片描述

官方镜像预安装:

Jetson Nano 官方镜像自带JetPack、CUDA、cuDNN、OpenCV等组件,组件安装路径如下所示:

组件路径
TensorRT/usr/src/tensorrt/
CUDA/usr/local/cuda/
cuDNN/usr/src/cudnn_samples_v7/
Multimedia API/usr/src/jetson_multimedia_api
VisionWorks/usr/share/visionworks/sources/ 、 /usr/share/visionworks-tracking/sources/ 、 /usr/share/visionworks-sfm/sources/
OpenCV/usr/share/OpenCV

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dunkle.T

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值