02 走楼梯
描述
树老师爬楼梯,他可以每次走1级或者2级,输入楼梯的级数,求不同的走法数
例如:楼梯一共有3级,他可以每次都走一级,或者第一次走一级,第二次走两级
也可以第一次走两级,第二次走一级,一共3种方法。
输入
输入包含若干行,每行包含一个正整数N,代表楼梯级数, 1 < = N < = 30 1 <= N <= 30 1<=N<=30
输出
不同的走法数,每一行输入对应一行输出
样例输入
5
8
10
样例输出
8
34
89
分析
我们可以使用递归来分解问题,使之逐步简化成更多的小问题。简而言之,我们是要发现问题之间的递推关系,一个问题是否可以分解成多种情况下的其他同类小问题,并逐步分化。然后我们要找到一个或者多个最简问题,这个最简问题就是分解的最终形式,其解必须显而易见,其也是递归的终止条件
本题中,走N级台阶,可以从第一步开始分析。如果第一步走1级,则余下的走法是走剩下N-1级台阶的走法。同理如果第一步走2级,则余下的走法是走剩下N-2级的走法。我们可以发现递推关系: f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n)=f(n-1)+f(n-2) f(n)=f(n−1)+f(n−2)。最终只剩下2级台阶时,有2种走法。只剩下1级台阶时,有1种走法。
代码实现
#include<iostream>
using namespace std;
int main()
{
int f(int n);
int n;
while (cin >> n)
{
cout << f(n)<<endl;
}
}
int f(int n)
{
if (n == 1)return 1;
else if (n == 2)return 2;
else return f(n - 1) + f(n - 2);
}