【算法】走楼梯

问题

现在有一截楼梯,根据你的腿长,你一次能走 1 级或 2 级楼梯,已知你要走 n 级楼梯才能走到你的目的楼层,请实现一个方法,计算你走到目的楼层的方案数。

输入描述

输入整数n。(1<=n<=50)

输出描述

输出方案数。

示例

输入
5
输出
8

分析

当楼梯为1级时有 1 种:1
当楼梯为2级时有 2 种:11 和 2
当楼梯为3级时有 3 种:111 和 12 和 21
当楼梯为4级时有 5 种:1111 和 22 和 121 和 112 和 211
当楼梯为5级时有 8 种:11111 和 221 和 212 和 122 和 1112 和 1121 和 1211 和 2111
… …

由以上假设当楼梯为0级时有 1 种走法,则当楼梯为2级时的走法等于楼梯为1级和0级的走法之和,当楼梯为3级时的走法等于楼梯为2级和1级的走法之和,以此类推,当楼梯为n级时的走法等于楼梯为n-1级和n-2级的走法之和,即S(n) = S(n-1) + S(n-2)。可以通过递归或者循环来解决该问题。

解决方案代码

使用Java语言来实现如下:

1、通过递归来解决

public static int solution(int n) {
    if (n == 1 || n == 2) {
    	// 当楼梯为1或者2级时,一共可能的走法数量就为1或者2
		return n;
	} else {
		// 当楼梯数n >= 3,走法为楼梯数为n-1的走法加上楼梯数为n-2时的走法
    	return solution(n - 1) + solution(n - 2);
    }
}

2、通过循环来解决

public static int solution(int n) {
    int result = 1;
    int a = 0; // 表示 n-2 的走法
    int b = 0; // 表示 n-1 的走法
    for (int i = 1; i <= n; i++) {
        a = b;
        b = result;
        result = a + b;
    }
    return result;
}
### Java 实现楼梯问题的递归算法 以下是基于提供的引用内容和专业知识编写的 Java 实现楼梯问题的递归算法代码: #### 方法说明 在楼梯问题中,假设每次可以迈或者两,则到达第 `n` 阶台阶的方式数等于到达第 `n-1` 和第 `n-2` 阶台方式数之和。此逻辑可以通过递归来实现。 为了优化性能并避免重复计算,引入了个哈希表(`HashMap`),用于存储已计算的结果,从而减少不必要的递归调用[^3]。 ```java import java.util.HashMap; public class StairClimbing { private HashMap<Integer, Integer> memo = new HashMap<>(); public int climbStairs(int n) { if (n == 1) return 1; if (n == 2) return 2; if (memo.containsKey(n)) { return memo.get(n); } else { int result = climbStairs(n - 1) + climbStairs(n - 2); memo.put(n, result); return result; } } public static void main(String[] args) { StairClimbing solution = new StairClimbing(); int steps = 5; // 可以更改这个值测试不同阶数的情况 System.out.println("爬到 " + steps + " 层楼梯的方法总数为:" + solution.climbStairs(steps)); } } ``` 上述代码实现了带记忆化的递归方法,有效解决了传统递归可能带来的超时问题。通过缓存中间结果,显著提高了程序效率。 --- #### 进解释 如果不需要考虑性能优化,也可以直接使用纯递归形式完成该问题。然而需要注意的是,在输入较大时可能会因栈溢出或耗时过长而失败[^2]。 ```java public class SimpleRecursiveSolution { public int climbStairs(int n) { if (n == 1 || n == 2) return n; return climbStairs(n - 1) + climbStairs(n - 2); } public static void main(String[] args) { SimpleRecursiveSolution solution = new SimpleRecursiveSolution(); int steps = 5; // 测试不同的层数 System.out.println("简单递归版本:爬到 " + steps + " 层楼梯的方法总数为:" + solution.climbStairs(steps)); } } ``` 尽管这种方法简洁明了,但在实际应用中并不推荐,因为其时间复杂度较高 \(O(2^n)\)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

it_hao528

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值