【paper解读】FCM:具体化 (Embodied)、自监督的小样本表示学习

本文介绍了一种新型的学习策略——快速概念映射(Fast Concept Mapping, FCM),它使AI代理通过自我监督探索在模拟环境中学习。这种方法仅需一个标记示例就能识别对象,减少了对大量标注数据的依赖。通过结合强化学习和自监督学习,代理在与环境的互动中习得语义概念,从而展现出类似人类的学习方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原创 张军斌 AI约读社 今天
收录于话题
#强化学习 1 #自监督学习 8

导读:大多数用于对象检测和识别的人工神经网络都是在fully supervised的条件下进行训练的。这不仅非常耗资源,因为它需要大量带标记的数据,而且与人类的学习方式也大不相同。这篇文章的作者首先让agent通过self-supervised exploration在模拟世界中学习。然后让agent通过与世界互动学习到的representations,在这个过程中引入一种称为快速概念映射 (Fast Concept Mapping,FCM) 的方法来定义和检测语义概念。通过具体化 (Embodied) 好奇心驱动探索 (curiosity-driven exploration) 的自我监督学习,该方法仅用一个标记的示例就可以识别出对象。因此,这篇文章的贡献是提出了一种在没有太多监督的情况下学习概念的可行策略 (fast concept mapping),并表明通过与世界的纯粹互动可以学习到环境的有意义的representations。

论文:Fast Concept Mapping: The Emergence of Human Abilities in Artificial Neural Networks when Learning Embodied and Self-Supervised

链接https://arxiv.org/abs/2102.02153

代码https://github.com/vkakerbeck/FastConceptMapping

数据http://dx.doi.org/10.17632/zdh4d5ws2z.2

》》》》》
阅读原文:https://mp.weixin.qq.com/s/naf8923HFFKJ_V6v693ahg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值