文章目录
数字频率与模拟频率的关系与特点
数字频率与模拟频率的定义
模拟频率 f f f:每秒经历多少个周期,单位为 H z Hz Hz;
模拟角频率 Ω \Omega Ω:每秒经历多少弧度,单位为 r a d / s rad/s rad/s;
数字角频率 ω \omega ω:采样点之间的弧度,单位为 r a d rad rad。
数字信号是由模拟信号采样而来,采样频率不一样,采样点的时间就不一样。因此用每秒经历多少个周期已无多大意义,所以。
{
f
→
s
−
1
Ω
=
2
π
f
→
r
a
d
/
s
ω
=
Ω
/
f
s
=
Ω
T
s
→
r
a
d
ω
=
Ω
/
f
s
=
2
π
f
/
f
s
(
1
−
1
)
\begin{cases} f{\to}s^{-1}\\ \Omega=2{\pi}f{\to}rad/s\\ \omega={\Omega}/f_s={\Omega}T_s{\to}rad\\ \end{cases} \\ \omega={\Omega}/f_s=2{\pi}{\color{blue}f/fs}{\qquad}(1-1)
⎩⎪⎨⎪⎧f→s−1Ω=2πf→rad/sω=Ω/fs=ΩTs→radω=Ω/fs=2πf/fs(1−1)
对于上式(1-1)的解释:
- 数字角频率 ω \omega ω是模拟角频率 Ω \Omega Ω对采样频率 f s f_s fs的归一化;
- f / f s f/f_s f/fs是一个无量纲的数, 2 π 2{\pi} 2π代表着弧度;
- 即此频率(数字角频率: r a d rad rad)非彼频率(模拟角频率: r a d / s rad/s rad/s)。
数字角频率与采样频率有关:
(
.
.
.
,
−
2
π
,
−
π
,
0
,
π
,
2
π
,
.
.
.
)
(
.
.
.
,
f
s
,
−
0.5
f
s
,
0
,
0.5
f
s
,
f
s
,
.
.
.
)
(...,-2\pi,-\pi,0,\pi,2\pi,...)\\(...,fs,-0.5fs,0,0.5fs,fs,...)
(...,−2π,−π,0,π,2π,...)(...,fs,−0.5fs,0,0.5fs,fs,...)
为什么模拟角频率和数字角频率不一样
一个单位是 r a d / s \color{blue}rad/s rad/s,另一个是 r a d \color{blue}rad rad,肯定就不一样了啊。
模拟角频率 Ω ⊂ ( − ∞ , + ∞ ) \Omega{\subset}(-\infin,+\infin) Ω⊂(−∞,+∞),而数字角频率 ω ⊂ ( − π , π ) \omega{\subset}(-\pi,\pi) ω⊂(−π,π),当然也可以是 ( 0 , 2 π ) (0,2\pi) (0,2π)。但由于数字角频率是具有周期性的,所以也可以认为数字角频率 ω ⊂ ( − ∞ , + ∞ ) \omega{\subset(-\infin,+\infin)} ω⊂(−∞,+∞),只不过是周期性的。
设 f s = 1 H z f_s=1Hz fs=1Hz,当 Ω = π / 8 \Omega=\pi/8 Ω=π/8和 Ω = 17 π / 8 \Omega=17\pi/8 Ω=17π/8时,抽样序列如下:可以看到虽然模拟角频率增加了 2 π 2\pi 2π,但是由于采样点数和采样值都相同,所以实际的离散序列也是一样的。这也体现出了离散序列的角频率是以 2 π 2\pi 2π为周期的。
MATLAB代码如下:
step = 64; % 用于产生模拟信号的精度
t = 0:1/(2*step):20;
t = t';
w1 = pi / 8;
x1 = cos(w1 .* t);
w2 = pi * 17 / 8;
x2 = cos(w2 .* t);
fs = 1;
ts = 0:1/fs:20;
ts = ts';
% 下面的作用是查找ts元素离t中最近元素的索引
D = abs(bsxfun(@minus, ts.', t));
M = min(D, [], 1);
[Index, ~] = find(bsxfun(@eq, M, D));
x1n = x1(Index); % x1的抽样序列
x2n = x2(Index); % x2的抽样序列
subplot(211); plot(t, x1, 'b');
hold on; stem(ts, x1n, 'r');
title('$$\Omega=\frac{\pi}{8}$$', 'Interpreter', 'latex');
subplot(212); plot(t, x2, 'b');
hold on; stem(ts, x2n, 'r');
title('$$\Omega=\frac{17\pi}{8}$$', 'Interpreter', 'latex');
xlabel(['fs=', num2str(fs), 'Hz']);
时域离散信号和时域离散系统
时域离散信号、系统!!!
时域离散信号
常用的典型序列
序列的运算
加、减、乘、除、反转等。
时域离散系统
线性系统
当系统T的输入为
x
1
(
n
)
x_1(n)
x1(n)时,输出是
y
1
(
n
)
y_1(n)
y1(n);输入为
x
2
(
n
)
x_2(n)
x2(n)时,输出是
y
2
(
n
)
y_2(n)
y2(n)。若满足线性,则输入为
x
1
(
n
)
+
x
2
(
n
)
x_1(n)+x_2(n)
x1(n)+x2(n)时,输出应为
y
1
(
n
)
+
y
2
(
n
)
y_1(n)+y_2(n)
y1(n)+y2(n);且输入为
a
x
1
(
n
)
ax_1(n)
ax1(n)时,输出是
a
y
1
(
n
)
ay_1(n)
ay1(n)。
i
f
{
y
1
(
n
)
=
T
[
x
1
(
n
)
]
y
2
(
n
)
=
T
[
x
2
(
n
)
]
h
a
v
e
{
T
[
x
1
(
n
)
+
x
2
(
n
)
]
=
y
1
(
n
)
+
y
2
(
n
)
T
[
a
x
1
(
n
)
]
=
a
y
1
(
n
)
if{\quad} \begin{cases} y_1(n)=T\big[x_1(n)\big]\\ y_2(n)=T\big[x_2(n)\big]\\ \end{cases} \\ have{\quad} \begin{cases} T\big[x_1(n)+x_2(n)\big]=y_1(n)+y_2(n)\\ T\big[ax_1(n)\big]=ay_1(n) \end{cases}
if{y1(n)=T[x1(n)]y2(n)=T[x2(n)]have{T[x1(n)+x2(n)]=y1(n)+y2(n)T[ax1(n)]=ay1(n)
时不变系统
i f y ( n ) = T [ x ( n ) ] h a v e y ( n − n 0 ) = T [ x ( n − n 0 ) ] if{\quad}y(n)=T\big[x(n)\big]\\ have{\quad}y(n-n_0)=T\big[x(n-n_0)\big] ify(n)=T[x(n)]havey(n−n0)=T[x(n−n0)]
线性时不变系统及其输入与输出之间的关系
系 统 单 位 冲 激 响 应 : h ( n ) = T [ δ ( n ) ] 输 入 信 号 : x ( n ) = ∑ m = − ∞ + ∞ x ( m ) δ ( n − m ) 则 输 出 为 : y ( n ) = T [ ∑ m = − ∞ + ∞ x ( m ) δ ( n − m ) ] = ∑ m = − ∞ + ∞ x ( m ) [ δ ( n − m ) ] 根 据 时 不 变 性 质 有 : y ( n ) = ∑ m = − ∞ + ∞ x ( m ) h ( n − m ) = x ( n ) ∗ h ( n ) 系统单位冲激响应:{\quad}h(n)=T\Big[\delta(n)\Big]\\ 输入信号:x(n)=\sum_{m=-\infin}^{+\infin}x(m)\delta(n-m)\\ 则输出为:y(n)=T\Big[\sum_{m=-\infin}^{+\infin}x(m)\delta(n-m)\Big]\\ =\sum_{m=-\infin}^{+\infin}x(m)\Big[\delta(n-m)\Big]\\ 根据时不变性质有:\\ y(n)=\sum_{m=-\infin}^{+\infin}x(m)h(n-m)=x(n)*h(n) 系统单位冲激响应:h(n)=T[δ(n)]输入信号:x(n)=m=−∞∑+∞x(m)δ(n−m)则输出为:y(n)=T[m=−∞∑+∞x(m)δ(n−m)]=m=−∞∑+∞x(m)[δ(n−m)]根据时不变性质有:y(n)=m=−∞∑+∞x(m)h(n−m)=x(n)∗h(n)
系统的因果性和稳定性
系统当前的输出只与之前的输入有关,后之后的输入无关。
h
(
n
)
=
0
n
<
0
h(n)=0{\quad}n<0
h(n)=0n<0
时域离散系统的输入输出描述法—线性常系数差分方程
线性常系数差分方程
y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ i = 1 N a i y ( n − i ) o r ∑ i = 0 N a i y ( n − i ) = ∑ i = 0 M b i x ( n − i ) a 0 = 1 y(n)=\sum_{i=0}^{M}b_ix(n-i)-\sum_{i=1}^{N}a_iy(n-i)\\ or{\quad}\sum_{i=0}^{N}a_iy(n-i)=\sum_{i=0}^{M}b_ix(n-i){\quad}a_0=1 y(n)=i=0∑Mbix(n−i)−i=1∑Naiy(n−i)ori=0∑Naiy(n−i)=i=0∑Mbix(n−i)a0=1
差分方程的阶数是用方程 y ( n − i ) y(n-i) y(n−i)项中 i i i的最大取值与最小取值之差确定的,即上式是N阶线性常系数差分方程。
线性常系数差分方程的求解
- 经典解法:齐次解、特解
- 递推解法
- 交换域方法:将差分方程变换到 z z z域
- 还可以由差分方程求出系统的单位脉冲响应,然后与已知的输入序列进行卷积运算。
模拟信号数字处理方法
采样定理及A/D变换
x
a
(
t
)
x_a(t)
xa(t)是模拟信号、
p
δ
(
t
)
p_{\delta}(t)
pδ(t)是单位冲激序列、
x
a
^
(
t
)
\hat{x_a}(t)
xa^(t)是经理想采样后的信号。
p
δ
(
t
)
=
∑
n
=
−
∞
+
∞
δ
(
t
−
n
T
)
x
a
^
(
t
)
=
x
a
(
t
)
p
δ
(
t
)
{
X
a
(
j
ω
)
=
F
[
x
a
(
t
)
]
X
a
^
(
j
ω
)
=
F
[
x
a
^
(
t
)
]
P
δ
(
j
ω
)
=
F
[
p
δ
(
t
)
]
p_{\delta}(t)=\sum_{n=-\infin}^{+\infin}\delta(t-nT)\\ \hat{x_a}(t)=x_a(t)p_{\delta}(t)\\ \begin{cases} X_a(j\omega)=\mathscr{F}\Big[x_a(t)\Big]\\ \hat{X_a}(j\omega)=\mathscr{F}\Big[\hat{x_a}(t)\Big]\\ P_{\delta}(j\omega)=\mathscr{F}\Big[p_{\delta}(t)\Big]\\ \end{cases}
pδ(t)=n=−∞∑+∞δ(t−nT)xa^(t)=xa(t)pδ(t)⎩⎪⎪⎪⎨⎪⎪⎪⎧Xa(jω)=F[xa(t)]Xa^(jω)=F[xa^(t)]Pδ(jω)=F[pδ(t)]
下面推导理想采样信号的频谱与原模拟信号频谱的关系:
X
a
^
(
j
Ω
)
=
1
2
π
X
a
(
j
Ω
)
∗
P
δ
(
j
Ω
)
.
.
.
X
a
^
(
j
Ω
)
=
1
T
∑
k
=
−
∞
+
∞
X
a
(
j
Ω
−
j
k
Ω
s
)
\hat{X_a}(j\Omega)=\frac{1}{2\pi}X_a(j\Omega)*P_{\delta}(j\Omega)\\ ...\\ \hat{X_a}(j\Omega)=\frac{1}{T}\sum_{k=-\infin}^{+\infin}X_a(j\Omega-jk\Omega_s)
Xa^(jΩ)=2π1Xa(jΩ)∗Pδ(jΩ)...Xa^(jΩ)=T1k=−∞∑+∞Xa(jΩ−jkΩs)
上式表明理想采样信号的频谱是原模拟信号频谱沿频率轴,每间隔采样角频率
Ω
s
=
2
π
F
S
=
2
π
T
\Omega_s=2{\pi}F_S=\frac{2{\pi}}{T}
Ωs=2πFS=T2π重复出现一次,并叠加而形成的周期函数。或者说理想采样信号的频谱是原模拟信号的频谱以
Ω
s
\Omega_s
Ωs为周期,进行周期性延拓而成的。
因此,若要理想采样信号的频谱不重合,则需要满足: Ω s ≥ w m a x \Omega_s{\ge}w_{max} Ωs≥wmax或 F s ≥ f m a x F_s{\ge}f_{max} Fs≥fmax,这就是采样定理。
数字序列转换成模拟信号
如果
x
(
n
)
x(n)
x(n)是在满足抽样定理的条件下得到的,那么可以通过一个低通滤波器不失真地将原模拟信号
x
a
(
t
)
x_a(t)
xa(t)恢复出来,低通滤波器的传输函数如下:
G
(
j
Ω
)
=
{
T
∣
Ω
∣
<
1
2
Ω
s
0
∣
Ω
∣
≥
1
2
Ω
s
G(j\Omega)= \begin{cases} T & \big|\Omega\big|<\frac{1}{2}\Omega_s\\ 0 & \big|\Omega\big|\ {\ge}\ \frac{1}{2}\Omega_s\\ \end{cases}
G(jΩ)={T0∣∣Ω∣∣<21Ωs∣∣Ω∣∣ ≥ 21Ωs
其时域表达式为:
g
(
t
)
=
1
2
π
∫
−
∞
+
∞
G
(
j
Ω
)
e
j
Ω
t
d
Ω
=
1
2
π
∫
−
Ω
s
/
2
+
Ω
s
/
2
T
e
j
Ω
t
d
Ω
=
sin
(
Ω
s
t
/
2
)
Ω
s
t
/
2
∵
Ω
s
=
2
π
F
s
=
2
π
/
T
∴
g
(
t
)
=
sin
(
π
t
)
/
T
π
t
/
T
g(t)=\frac{1}{2\pi}\int_{-\infin}^{+\infin}G(j\Omega)e^{j{\Omega}t}d_{\Omega}=\frac{1}{2\pi}\int_{-\Omega_s/2}^{+\Omega_s/2}Te^{j{\Omega}t}d_{\Omega}=\frac{\sin({\Omega_s}t/2)}{{\Omega_s}t/2}\\ {\because}{\qquad}{\Omega_s}=2{\pi}F_s=2{\pi}/T\\ {\therefore}g(t)=\frac{\sin({\pi}t)/T}{{\pi}t/T}
g(t)=2π1∫−∞+∞G(jΩ)ejΩtdΩ=2π1∫−Ωs/2+Ωs/2TejΩtdΩ=Ωst/2sin(Ωst/2)∵Ωs=2πFs=2π/T∴g(t)=πt/Tsin(πt)/T
g
(
t
)
g(t)
g(t)被称为内插函数。
x
(
n
)
=
x
a
(
n
T
)
x(n)=x_a(nT)
x(n)=xa(nT)是经
x
a
(
t
)
x_a(t)
xa(t)满足采样定理采样后的离散信号,我们现在知道离散信号,如何恢复出模拟信号呢?转换公式如下(详细推导见DSP书第26页):
x
a
(
t
)
=
∑
n
=
−
∞
+
∞
x
a
(
n
T
)
sin
[
π
(
t
−
n
T
)
]
/
T
π
(
t
−
n
T
)
/
T
x_a(t)=\sum_{n=-\infin}^{+\infin}x_a(nT)\frac{\sin\Big[{\pi}(t-nT)\Big]\Big/T}{{\pi}(t-nT)\Big/T}
xa(t)=n=−∞∑+∞xa(nT)π(t−nT)/Tsin[π(t−nT)]/T
实际中采用D/AC完成数字信号到模拟信号的转换,包括三部分:解码器、零阶保持器和平滑滤波器。框图如下:
由时域离散信号 x a ( n T ) x_a(nT) xa(nT)恢复模拟信号的过程是内插过程。
时域离散信号和系统的频域分析
时域离散信号的傅里叶变换的定义及性质
x ( t ) x(t) x(t)的傅里叶变换是 X ( e j ω ) X(e^{j\omega}) X(ejω), x ( n ) x(n) x(n)的傅里叶变换也是 X ( e j ω ) X(e^{j\omega}) X(ejω),在频域都是连续的。
DTFT的定义
推导:
∵
x
(
n
)
=
x
(
t
)
δ
T
(
t
)
=
x
(
t
)
∑
n
=
−
∞
∞
δ
(
t
−
n
T
)
∴
X
(
j
ω
)
=
F
[
x
(
n
)
]
=
∫
−
∞
+
∞
x
(
t
)
∑
n
=
−
∞
∞
δ
(
t
−
n
T
)
e
−
j
ω
t
d
t
=
∑
n
=
−
∞
∞
∫
−
∞
+
∞
x
(
t
)
δ
(
t
−
n
T
)
e
−
j
ω
t
d
t
=
∑
n
=
−
∞
∞
x
(
n
T
)
e
−
j
ω
n
T
∫
−
∞
+
∞
δ
(
t
−
n
T
)
d
t
=
∑
n
=
−
∞
∞
x
(
n
T
)
e
−
j
ω
n
T
{\because}{\quad}x(n)=x(t){\delta_T}(t)=x(t)\sum_{n=-\infin}^{\infin}{\delta}(t-nT)\\ {\therefore}{\quad} X(j\omega)={\mathscr{F}}[x(n)]=\int_{-\infin}^{+\infin}x(t)\sum_{n=-\infin}^{\infin}{\delta}(t-nT)e^{-j{\omega}t}d_t\\ =\sum_{n=-\infin}^{\infin}\int_{-\infin}^{+\infin}x(t)\delta(t-nT)e^{-j{\omega}t}d_t\\ =\sum_{n=-\infin}^{\infin}x(nT)e^{-j{\omega}nT}\int_{-\infin}^{+\infin}\delta(t-nT)d_t\\ =\sum_{n=-\infin}^{\infin}x(nT)e^{-j{\omega}nT}
∵x(n)=x(t)δT(t)=x(t)n=−∞∑∞δ(t−nT)∴X(jω)=F[x(n)]=∫−∞+∞x(t)n=−∞∑∞δ(t−nT)e−jωtdt=n=−∞∑∞∫−∞+∞x(t)δ(t−nT)e−jωtdt=n=−∞∑∞x(nT)e−jωnT∫−∞+∞δ(t−nT)dt=n=−∞∑∞x(nT)e−jωnT
令
T
=
1
T=1
T=1,则变为:
x
(
n
)
=
x
a
(
n
T
)
=
x
(
t
)
∣
t
=
n
T
{
X
(
e
j
ω
)
=
∑
n
=
−
∞
+
∞
x
(
n
)
e
−
j
ω
n
x
(
n
)
=
1
2
π
∫
−
π
π
X
(
e
j
ω
)
e
j
ω
n
d
ω
x(n)=x_a(nT)=x(t)\Big|_{t=nT}\\ \begin{cases} X(e^{j\omega})=\sum_{n=-\infin}^{+\infin}x(n)e^{-j{\omega}n}\\ \\ x(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})e^{j{\omega}n}d_{\omega} \end{cases}
x(n)=xa(nT)=x(t)∣∣∣t=nT⎩⎪⎨⎪⎧X(ejω)=∑n=−∞+∞x(n)e−jωnx(n)=2π1∫−ππX(ejω)ejωndω
DTFT的性质
-
周期性: X ( e j ω ) = X ( e j ω + 2 π M ) X(e^{j\omega})=X(e^{j{\omega+2{\pi}M}}) X(ejω)=X(ejω+2πM),周期为 2 π 2\pi 2π。
-
线性
-
时移和频移:
F [ x ( n − n 0 ) ] = e − j ω n 0 X ( e j ω ) F [ e j Ω 0 n x ( n ) ] = X ( e j ( ω − Ω 0 ) ) \mathscr{F}\Big[x(n-n_0)\Big]=e^{-j{\omega}n_0}X(e^{j\omega})\\ \mathscr{F}\Big[e^{j{\Omega_0}n}x(n)\Big]=X(e^{j({\omega}-{\Omega_0})}) F[x(n−n0)]=e−jωn0X(ejω)F[ejΩ0nx(n)]=X(ej(ω−Ω0)) -
对称性: x e ( n ) x_e(n) xe(n)为共轭对称序列(其实部是偶函数、虚部是奇函数,即满足 x e ( n ) = x e ∗ ( − n ) x_e(n)=x_e^{*}(-n) xe(n)=xe∗(−n)); x o ( n ) x_o(n) xo(n)为共轭反对称序列(其实部是奇函数、虚部是偶函数,即满足 x o ( n ) = − x o ∗ ( − n ) x_o(n)=-x_o^{*}(-n) xo(n)=−xo∗(−n))。
{ x ( n ) = x r ( n ) + j x i ( n ) X ( e j ω ) = X e ( e j ω ) + X o ( e j ω ) { x ( n ) = x e ( n ) + x o ( n ) X ( e j ω ) = X R ( e j ω ) + j X I ( e j ω ) \begin{cases} x(n)={\color{blue}x_r(n)}+{\color{red}jx_i(n)}\\ \\ X(e^{j\omega})={\color{blue}X_e(e^{j\omega})}+{\color{red}X_o(e^{j\omega})} \end{cases} \\ \begin{cases} x(n)={\color{blue}x_e(n)}+{\color{red}x_o(n)}\\ \\ X(e^{j\omega})={\color{blue}X_R(e^{j\omega})}+{\color{red}jX_I(e^{j\omega})} \end{cases} ⎩⎪⎨⎪⎧x(n)=xr(n)+jxi(n)X(ejω)=Xe(ejω)+Xo(ejω)⎩⎪⎨⎪⎧x(n)=xe(n)+xo(n)X(ejω)=XR(ejω)+jXI(ejω) -
频域卷积定理:
若 y ( n ) = h ( n ) x ( n ) 则 有 Y ( e j ω ) = 1 2 π H ( e j ω ) ∗ X ( e j ω ) = 1 2 π ∫ − π π H ( e j θ ) X ( e j θ ) d θ 若{\quad}y(n)=h(n)x(n)\\ 则有{\quad}Y(e^{j\omega})=\frac{1}{2\pi}H(e^{j\omega})*X(e^{j\omega})\\ =\frac{1}{2\pi}\int_{-\pi}^{\pi}H(e^{j\theta})X(e^{j\theta})d_{\theta} 若y(n)=h(n)x(n)则有Y(ejω)=2π1H(ejω)∗X(ejω)=2π1∫−ππH(ejθ)X(ejθ)dθ
- 帕斯维尔定理:信号时域的能量和频域的能量的关系。
∑ n = − ∞ + ∞ ∣ x ( n ) ∣ 2 = 1 2 π ∫ − π π ∣ X ( e j ω ) ∣ 2 d ω \sum_{n=-\infin}^{+\infin}\big|x(n)\big|^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\big|X(e^{j\omega})\big|^2d_{\omega} n=−∞∑+∞∣∣x(n)∣∣2=2π1∫−ππ∣∣X(ejω)∣∣2dω
周期序列的离散傅里叶级数及傅里叶变换表达式
周期序列的离散傅里叶级数(DFS)
X ( k ) ~ = D F S [ x ( n ) ~ ] = ∑ n = 0 N − 1 x ( n ) ~ e − j 2 π N k n ( 1 ) x ( n ) ~ = I D F S [ X ( k ) ~ ] = 1 N ∑ k = 0 N − 1 X ( k ) ~ e j 2 π N k n ( 2 ) \widetilde{X(k)}=DFS[\widetilde{x(n)}]=\sum_{n=0}^{N-1}\widetilde{x(n)}e^{-j{\frac{2\pi}{N}}kn}{\qquad}(1)\\ \widetilde{x(n)}=IDFS[\widetilde{X(k)}]=\frac{1}{N}\sum_{k=0}^{N-1}\widetilde{X(k)}e^{j{\frac{2\pi}{N}}kn}{\qquad}(2) X(k) =DFS[x(n) ]=n=0∑N−1x(n) e−jN2πkn(1)x(n) =IDFS[X(k) ]=N1k=0∑N−1X(k) ejN2πkn(2)
基波分量的频率为 2 π / N {2\pi}/N 2π/N,幅度是 ( 1 / N ) X ~ ( 1 ) (1/N){\widetilde{X}}(1) (1/N)X (1),一个周期序列可以用其 D F S DFS DFS系数 X ~ ( k ) \widetilde{X}(k) X (k)表示它的频谱分布规律。
周期序列的傅里叶变换表达式(FT)
复指数序列 e j ω 0 n e^{j{\omega_0}n} ejω0n的 F T FT FT
首先推导复指数序列
e
j
ω
0
n
e^{j{\omega_0}n}
ejω0n的傅里叶变换如下:
X
(
e
j
ω
)
=
F
[
e
j
ω
0
n
]
=
∑
r
=
−
∞
+
∞
2
π
δ
(
ω
−
(
ω
0
+
2
π
r
)
)
r
为
整
数
X(e^{j\omega})=\mathscr{F}[e^{j{\omega_0}n}]=\sum_{r=-\infin}^{+\infin}2{\pi}\delta\Big({\omega}-({\omega_0}+2{\pi}r)\Big){\quad}r为整数
X(ejω)=F[ejω0n]=r=−∞∑+∞2πδ(ω−(ω0+2πr))r为整数
上式表明:复指数序列
e
j
ω
0
n
e^{j{\omega_0}n}
ejω0n的
F
T
FT
FT是在
ω
0
+
2
π
r
\omega_0+2{\pi}r
ω0+2πr处的单位冲激函数,强度为
2
π
2\pi
2π。
周期序列的 F T FT FT
一般周期序列都能表示成不同复指数序列
e
j
ω
n
e^{j{\omega}n}
ejωn的叠加,因此再根据线性就可以得出该周期序列的傅里叶变换:
x
(
n
)
~
=
a
0
e
j
ω
0
n
+
a
1
e
j
ω
1
n
+
.
.
.
+
a
m
e
j
ω
m
n
\widetilde{x(n)}=a_0e^{j{\omega_0}n}+a_1e^{j{\omega_1}n}+...+a_me^{j{\omega_m}n}\\
x(n)
=a0ejω0n+a1ejω1n+...+amejωmn
或者这样考虑,对一般周期序列
x
(
n
)
~
\widetilde{x(n)}
x(n)
展开成
D
F
S
DFS
DFS,第k次谐波为
(
X
(
k
)
~
/
N
)
e
j
2
π
N
k
n
(\widetilde{X(k)}/N)e^{j\frac{2\pi}{N}kn}
(X(k)
/N)ejN2πkn,类似于复指数序列的
F
T
FT
FT,其
F
T
FT
FT为:
∑
r
=
−
∞
+
∞
2
π
X
(
k
)
~
N
δ
(
ω
−
(
2
π
N
k
+
2
π
r
)
)
r
为
整
数
\color{blue}\sum_{r=-\infin}^{+\infin}2{\pi}\frac{\widetilde{X(k)}}{N}\delta\Big({\omega}-({\frac{2\pi}{N}k}+2{\pi}r)\Big){\quad}r为整数
r=−∞∑+∞2πNX(k)
δ(ω−(N2πk+2πr))r为整数
上面是第k次谐波的
F
T
FT
FT,那么整个周期序列的
F
T
FT
FT为:
X
(
e
j
ω
)
=
F
[
x
(
n
)
~
]
=
∑
k
=
0
N
−
1
∑
r
=
−
∞
+
∞
2
π
X
(
k
)
~
N
δ
(
ω
−
(
2
π
N
k
+
2
π
r
)
)
r
为
整
数
X(e^{j\omega})={\mathscr{F}}[\widetilde{x(n)}]=\sum_{k=0}^{N-1}{\color{blue}\sum_{r={-\infin}}^{+\infin}2{\pi}\frac{{\widetilde{X(k)}}}{N}\delta\Big({\omega}-({\frac{2\pi}{N}k}+2{\pi}r)\Big){\quad}r为整数}\\
X(ejω)=F[x(n)
]=k=0∑N−1r=−∞∑+∞2πNX(k)
δ(ω−(N2πk+2πr))r为整数
式中,
K
=
0
,
1
,
2
,
.
.
.
,
N
−
1
K=0,1,2,...,N-1
K=0,1,2,...,N−1。如果让k在
−
∞
-\infin
−∞到
+
∞
+\infin
+∞区间变换,上式可简化为:
X
(
e
j
ω
)
=
∑
k
=
−
∞
∞
2
π
X
(
k
)
~
N
δ
(
ω
−
2
π
N
k
)
式
中
X
(
k
)
~
=
∑
n
=
0
N
−
1
x
(
n
)
~
e
−
j
2
π
N
k
n
X(e^{j\omega})=\sum_{k={-\infin}}^{\infin}{2\pi}\frac{\widetilde{X(k)}}{N}\delta(\omega-\frac{2\pi}{N}k)\\ 式中{\qquad}{\widetilde{X(k)}}=\sum_{n=0}^{N-1}\widetilde{x(n)}e^{-j{\frac{2\pi}{N}}kn}
X(ejω)=k=−∞∑∞2πNX(k)
δ(ω−N2πk)式中X(k)
=n=0∑N−1x(n)
e−jN2πkn
对于同一个周期信号,其DTS和FT的模的形状是一样的,不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。因此周期序列的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数的画法。
周期序列的 F T FT FT与周期信号 F T FT FT的联系
还记得周期信号
f
T
(
t
)
f_T(t)
fT(t)的傅里叶变换
(
F
T
(
j
ω
)
)
(F_T(j\omega))
(FT(jω))是什么吗?(省略掉推导):
F
T
(
j
w
)
=
∑
n
=
−
∞
∞
2
π
F
n
δ
(
ω
−
n
ω
0
)
F
(
e
j
ω
)
=
∑
k
=
0
N
−
1
∑
r
=
−
∞
+
∞
2
π
F
(
k
)
~
N
δ
(
ω
−
(
2
π
N
k
+
2
π
r
)
)
r
为
整
数
F_T(jw)=\sum_{n=-\infin}^{\infin}2{\pi}F_n{\delta}(\omega-n\omega_0)\\ F(e^{j\omega})=\sum_{k=0}^{N-1}{\color{blue}\sum_{r={-\infin}}^{+\infin}2{\pi}\frac{{\widetilde{F(k)}}}{N}\delta\Big({\omega}-({\frac{2\pi}{N}k}+2{\pi}r)\Big){\quad}r为整数}\\
FT(jw)=n=−∞∑∞2πFnδ(ω−nω0)F(ejω)=k=0∑N−1r=−∞∑+∞2πNF(k)
δ(ω−(N2πk+2πr))r为整数
上式表明:周期信号的傅里叶变换由无穷多个出现在谐波频率
n
ω
0
n\omega_0
nω0上的冲激函数组成,每一冲激的强度为傅里叶系数
F
n
F_n
Fn乘上
2
π
2\pi
2π。
看出来周期序列和周期信号的傅里叶变换有什么关系了吗?其实两者是一样的:
- 都是由不同位置的冲激叠加而成;
- 冲激的强度都是傅氏系数乘上 2 π 2\pi 2π(复指数序列的系数为1)。
但也有不同点,就是冲激位置的规律有点不一样:
- 周期信号的冲激在谐波频率 n ω 0 n\omega_0 nω0上
- 周期序列的冲激在 2 π N k + 2 π r , r \frac{2{\pi}}{N}k+2{\pi}r,r N2πk+2πr,r为整数处,具有周期性为 2 π 2\pi 2π。
为什么会出现周期性呢?并且周期为 2 π 2\pi 2π,请看开头的数字频率与模拟频率的关系与特点。
时域离散信号的FT与模拟信号FT之间的关系
X ( e j Ω T ) = 1 T ∑ k = − ∞ ∞ X a ( j Ω − j k Ω s ) X ( e j ω ) = 1 T ∑ k = − ∞ ∞ X a ( j ω − 2 π k T ) Ω s = 2 π F s = 2 π T X(e^{j{\Omega}T})=\frac{1}{T}\sum_{k=-\infin}^{\infin}X_a(j\Omega-jk\Omega_s)\\ X(e^{j\omega})=\frac{1}{T}\sum_{k=-\infin}^{\infin}X_a(j\frac{\omega-2{\pi}k}{T})\\ \Omega_s=2{\pi}F_s=\frac{2\pi}{T} X(ejΩT)=T1k=−∞∑∞Xa(jΩ−jkΩs)X(ejω)=T1k=−∞∑∞Xa(jTω−2πk)Ωs=2πFs=T2π
上式表明:时域离散信号的频谱也是模拟信号频谱的周期性延拓,周期为 Ω s = 2 π F s = 2 π T \Omega_s=2{\pi}F_s=\frac{2{\pi}}{T} Ωs=2πFs=T2π。
序列的 Z Z Z变换
Z变换的定义及与序列的FT的关系
X ( z ) = d e f = ∑ n = − ∞ + ∞ x ( n ) z − n ∑ n = − ∞ + ∞ ∣ x ( n ) z − n ∣ < ∞ X(z)=^{def}=\sum_{n=-\infin}^{+\infin}x(n)z^{-n}\\ \sum_{n=-\infin}^{+\infin}\Big|x(n)z^{-n}\Big|<{\infin}\\ X(z)=def=n=−∞∑+∞x(n)z−nn=−∞∑+∞∣∣∣x(n)z−n∣∣∣<∞
Z
Z
Z变换的收敛域一般是一个环带状,即
R
x
−
<
∣
z
∣
<
R
x
+
R_{x-}<\big|z\big|<R_{x+}
Rx−<∣∣z∣∣<Rx+。如果
Z
Z
Z变换的收敛域包括单位圆,那么:
X
(
e
j
ω
)
=
X
(
z
)
∣
z
=
e
j
ω
X(e^{j\omega})=X(z)\Big|_{z=e^{j\omega}}
X(ejω)=X(z)∣∣∣z=ejω
即单位圆上的Z变换就是序列的傅里叶变换(前提是在单位圆上收敛)。
Z变换的性质
设 X ( z ) = Z [ x ( n ) ] R x − < ∣ z ∣ < R x + X(z)=\mathscr{Z}\big[x(n)\big]{\quad}R_{x-}<\big|z\big|<R_{x+} X(z)=Z[x(n)]Rx−<∣∣z∣∣<Rx+,则有如下性质:
-
线性
-
移位性质:
Z [ x ( n − n 0 ) ] = z − n 0 X ( z ) R x − < ∣ z ∣ < R x + \mathscr{Z}\big[x(n-n_0)\big]=z^{-n_0}X(z){\quad}R_{x-}<\big|z\big|<R_{x+} Z[x(n−n0)]=z−n0X(z)Rx−<∣∣z∣∣<Rx+ -
序列乘以指数序列的性质:
y ( n ) = a n x ( n ) Y ( z ) = Z [ a n x ( n ) ] = X ( a − 1 Z ) ∣ a ∣ R x − < ∣ z ∣ < ∣ a ∣ R x + y(n)=a^{n}x(n)\\ Y(z)=\mathscr{Z}\big[a^{n}x(n)\big]=X(a^{-1}Z){\quad}|a|R_{x-}<\big|z\big|<|a|R_{x+} y(n)=anx(n)Y(z)=Z[anx(n)]=X(a−1Z)∣a∣Rx−<∣∣z∣∣<∣a∣Rx+ -
序列乘以n的ZT
X ( z ) = Z [ n x ( n ) ] = − z d X ( z ) d z R x − < ∣ z ∣ < R x + X(z)=\mathscr{Z}\big[nx(n)\big]=-z\frac{dX(z)}{dz}{\quad}R_{x-}<\big|z\big|<R_{x+} X(z)=Z[nx(n)]=−zdzdX(z)Rx−<∣∣z∣∣<Rx+ -
复共轭序列的ZT
X ( z ) = Z [ x ∗ ( n ) ] = X ∗ ( z ∗ ) R x − < ∣ z ∣ < R x + X(z)=\mathscr{Z}\big[x^{*}(n)\big]=X^{*}(z^{*}){\quad}R_{x-}<\big|z\big|<R_{x+} X(z)=Z[x∗(n)]=X∗(z∗)Rx−<∣∣z∣∣<Rx+ -
初值定理: x ( n ) x(n) x(n)是因果序列,则:
x ( 0 ) = lim z → ∞ X ( z ) x(0)=\lim_{z{\to}\infin}X(z) x(0)=z→∞limX(z) -
终值定理: x ( n ) x(n) x(n)是因果序列,其 Z Z Z变换的极点除可以有一个一阶极点在 z = 1 z=1 z=1上,其它极点都在单位圆内,则:
lim n → ∞ x ( n ) = lim z → 1 ( z − 1 ) X ( z ) \lim_{n{\to}\infin}x(n)=\lim_{z{\to}1}(z-1)X(z) n→∞limx(n)=z→1lim(z−1)X(z) -
时域卷积定理: W ( z ) W(z) W(z)的收敛域就是 X ( z ) X(z) X(z)和 Y ( z ) Y(z) Y(z)的公共收敛域。
W ( z ) = Z [ x ( n ) ∗ y ( n ) ] = X ( z ) Y ( z ) R w − < ∣ z ∣ < R w + { R w + = min [ R x + , R y + ] R w − = max [ R x − , R y − ] W(z)=\mathscr{Z}\big[x(n)^{*}y(n)\big]=X(z)Y(z){\quad}R_{w-}<\big|z\big|<R_{w+}\\ \begin{cases} R_{w+}=\min{\big[R_{x+},R_{y+}\big]}\\ R_{w-}=\max{\big[R_{x-},R_{y-}\big]}\\ \end{cases} W(z)=Z[x(n)∗y(n)]=X(z)Y(z)Rw−<∣∣z∣∣<Rw+{Rw+=min[Rx+,Ry+]Rw−=max[Rx−,Ry−] -
复卷积定理:不常用
-
帕斯维尔定理:不常用
利用Z变换分析信号和系统的频响特性
频率响应函数与系统函数
设系统初始状态为0,系统对
δ
(
n
)
\delta(n)
δ(n)的响应
h
(
n
)
h(n)
h(n)的傅里叶变换
H
(
e
j
ω
)
H(e^{j\omega})
H(ejω)称为系统的频率响应函数,即:
H
(
e
j
ω
)
=
∑
n
=
−
∞
+
∞
h
(
n
)
e
−
j
ω
n
=
∣
H
(
e
j
ω
n
)
∣
e
j
ϕ
(
ω
)
{
幅
频
特
性
:
∣
H
(
e
j
ω
n
)
∣
相
频
特
性
:
ϕ
(
ω
)
H(e^{j\omega})=\sum_{n=-\infin}^{+\infin}h(n)e^{-j{\omega}n}=\Big|H(e^{j{\omega}n})\Big|e^{j\phi(\omega)}\\ \begin{cases} 幅频特性:\Big|H(e^{j{\omega}n})\Big|\\ 相频特性:\phi(\omega) \end{cases}
H(ejω)=n=−∞∑+∞h(n)e−jωn=∣∣∣H(ejωn)∣∣∣ejϕ(ω){幅频特性:∣∣∣H(ejωn)∣∣∣相频特性:ϕ(ω)
将序列
h
(
n
)
h(n)
h(n)进行Z变换得到
H
(
z
)
H(z)
H(z),这就是该系统的系统函数,即:
H
(
z
)
=
Y
(
z
)
X
(
z
)
=
∑
i
=
0
M
b
i
z
−
i
∑
i
=
0
N
a
i
z
−
i
H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{M}b_iz^{-i}}{\sum_{i=0}^{N}a_iz^{-i}}
H(z)=X(z)Y(z)=∑i=0Naiz−i∑i=0Mbiz−i
如果Z变换的收敛域包含单位圆,则:
H
(
e
j
ω
)
=
H
(
z
)
∣
z
=
e
j
ω
H(e^{j\omega})=H(z)\Big|_{z=e^{j\omega}}
H(ejω)=H(z)∣∣∣z=ejω
输入序列 e j ω n e^{j{\omega}n} ejωn的频率响应
y ( n ) = h ( n ) ∗ x ( n ) = . . . = H ( e j ω ) e j ω n = ∣ H ( e j ω n ) ∣ e j [ ω n + ϕ ( ω ) ] y(n)=h(n)^{*}x(n)=...=H(e^{j\omega})e^{j{\omega}n}\\ =\Big|H(e^{j{\omega}n})\Big|e^{j\big[{\omega}n+\phi(\omega)\big]}\\ y(n)=h(n)∗x(n)=...=H(ejω)ejωn=∣∣∣H(ejωn)∣∣∣ej[ωn+ϕ(ω)]
上式说明:单频复指数序列 e j ω n e^{j{\omega}n} ejωn通过频率响应函数为 H ( e j ω ) H(e^{j\omega}) H(ejω)的系统后,输出还是单频复指数序列,只不过幅度放大 ∣ H ( e j ω n ) ∣ \Big|H(e^{j{\omega}n})\Big| ∣∣∣H(ejωn)∣∣∣倍,相移为 ϕ ( ω ) \phi(\omega) ϕ(ω)。
利用系统的零极点分布分析系统的频率响应特性
H ( z ) = A ∏ r = 1 M ( 1 − c r z − 1 ) ∏ r = 1 N ( 1 − d r z − 1 ) ∣ H ( e j ω ) ∣ = ∣ A ∣ ∏ r = 1 M ∣ z r ∣ ∏ r = 1 N ∣ P r ∣ ϕ ( ω ) = ω ( N − M ) + ∑ r = 1 N α r − ∑ r = 1 M β r H(z)=A\frac{\prod_{r=1}^M(1-c_rz^{-1})}{\prod_{r=1}^{N}(1-d_rz^{-1})} \\ |H(e^{j\omega})|=|A|\frac{\prod_{r=1}^M|z_r|}{\prod_{r=1}^N{|P_r|}} \\ \phi(\omega)=\omega(N-M)+\sum_{r=1}^{N}\alpha_r-\sum_{r=1}^{M}\beta_r H(z)=A∏r=1N(1−drz−1)∏r=1M(1−crz−1)∣H(ejω)∣=∣A∣∏r=1N∣Pr∣∏r=1M∣zr∣ϕ(ω)=ω(N−M)+r=1∑Nαr−r=1∑Mβr
即:
- 幅频响应等于所有的零点到 ω \omega ω的模长的乘积除以所有的极点到 ω \omega ω的模长的乘积;
- 相频响应等于所有的零点与 ω \omega ω形成的夹角之和减去所有的极点与 ω \omega ω形成的夹角之和。
几种特殊系统的系统函数及特点
全通滤波器
∣ H ( e j ω ) ∣ = 1 0 ≤ ω ≤ 2 π |H(e^{j\omega})|=1{\quad}0{\le}\omega{\le}2\pi ∣H(ejω)∣=10≤ω≤2π
梳妆滤波器
H ( z N ) = 1 − z − N 1 − a z − N 0 < a < 1 H(z^{N})=\frac{1-z^{-N}}{1-az^{-N}}{\qquad}0<a<1 H(zN)=1−az−N1−z−N0<a<1
梳妆滤波器可以滤除输入信号中 ω = 2 π N k , k = 0 , 1 , . . . , N − 1 \omega=\frac{2\pi}{N}k,\ k=0,1,...,N-1 ω=N2πk, k=0,1,...,N−1的频率分量,可以滤除电网谐波干扰和其它频谱等间隔分布的干扰。当 a = 1 a=1 a=1时就变成了全通滤波器,下面给出频率响应和零极点分布的 M A T L A B MATLAB MATLAB代码:
% y(n) -0.9y(n-8) = x(n) - x(n-8);
% H(z) = (1 - z^-8) / (1 - 0.9z^-8)
B = [1 0 0 0 0 0 0 0 -1];
A = [1 0 0 0 0 0 0 0 -0.9];
% impz(B, A, 200);
% [Z, P, K] = tf2zp(B, A)
zplane(B, A);
legend('零点', '极点');
title('$$ H(z) = \frac{1-z^{-8}}{1-0.9z^{-8}}$$', ...
'Interpreter', 'latex');
[H, w] = freqz(B, A, 500, 'whole');
Hm = abs(H);
Hp = angle(H);
subplot(2, 1, 1);
plot(w, Hm), grid on;
xlabel('\omega(rad/s)');
ylabel('Magnitude');
title('幅频特性曲线');
subplot(2, 1, 2);
plot(w, Hp), grid on;
xlabel('\omega(rad/s)');
ylabel('Phase');
title('相频特性曲线');
a = 0.2 a=0.2 a=0.2时的频率响应和零极点分布图:
a = 0.9 a=0.9 a=0.9时的频率响应和零极点分布图:
离散傅里叶变换(DFT)
对离散时间序列 x ( n ) x(n) x(n)进行FT得到的结果在频域仍然是连续的,不便于计算机处理。因此目的是对频域也进行离散化,方法有多种,如DFT、DFS。对于DFS,主要步骤就是对 x ( n ) x(n) x(n)进行周期性延拓,然后计算其傅里叶级数,该结果和DFT的结果是有关联的。
DFT的定义
X ( k ) = D F T [ x ( n ) ] = ∑ n = 0 N − 1 x ( n ) W N k n k = 0 , 1 , . . . , N − 1 x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( K ) W N − k n n = 0 , 1 , . . . , N − 1 W N = e − j 2 π N X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)W_N^{kn}{\quad}k=0,1,...,N-1\\ x(n)=IDFT[X(k)]=\frac{1}{N}\sum_{k=0}^{N-1}X(K)W_N^{-kn}{\quad}n=0,1,...,N-1\\ W_N=e^{-j\frac{2\pi}{N}}\\ X(k)=DFT[x(n)]=n=0∑N−1x(n)WNknk=0,1,...,N−1x(n)=IDFT[X(k)]=N1k=0∑N−1X(K)WN−knn=0,1,...,N−1WN=e−jN2π
将
W
N
=
e
−
j
2
π
N
W_N=e^{-j\frac{2\pi}{N}}
WN=e−jN2π(旋转因子)带入即得:
X
(
k
)
=
D
F
T
[
x
(
n
)
]
=
∑
n
=
0
N
−
1
x
(
n
)
e
−
j
2
π
N
k
n
k
=
0
,
1
,
.
.
.
,
N
−
1
x
(
n
)
=
I
D
F
T
[
X
(
k
)
]
=
1
N
∑
k
=
0
N
−
1
X
(
k
)
e
j
2
π
N
k
n
n
=
0
,
1
,
.
.
.
,
N
−
1
X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}{N}kn}{\quad}k=0,1,...,N-1\\ x(n)=IDFT[X(k)]=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi}{N}kn}{\quad}n=0,1,...,N-1
X(k)=DFT[x(n)]=n=0∑N−1x(n)e−jN2πknk=0,1,...,N−1x(n)=IDFT[X(k)]=N1k=0∑N−1X(k)ejN2πknn=0,1,...,N−1
和DFS的比较
D F S : { X ( k ) ~ = D F S [ x ( n ) ~ ] = ∑ n = 0 N − 1 x ( n ) ~ e − j 2 π N k n ( 1 ) x ( n ) ~ = I D F S [ X ( k ) ~ ] = 1 N ∑ k = 0 N − 1 X ( k ) ~ e j 2 π N k n ( 2 ) D F T : { X ( k ) = D F T [ x ( n ) ] = ∑ n = 0 N − 1 x ( n ) e − j 2 π N k n k = 0 , 1 , . . . , N − 1 ( 3 ) x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N k n n = 0 , 1 , . . . , N − 1 ( 4 ) DFS: \begin{cases} \widetilde{X(k)}=DFS[\widetilde{x(n)}]=\sum_{n=0}^{N-1}\widetilde{x(n)}e^{-j{\frac{2\pi}{N}}kn}{\qquad}(1)\\ \\ \widetilde{x(n)}=IDFS[\widetilde{X(k)}]=\frac{1}{N}\sum_{k=0}^{N-1}\widetilde{X(k)}e^{j{\frac{2\pi}{N}}kn}{\qquad}(2)\\ \end{cases} \\ DFT: \begin{cases} X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}{N}kn}{\quad}k=0,1,...,N-1{\quad}(3)\\ \\ x(n)=IDFT[X(k)]=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi}{N}kn}{\quad}n=0,1,...,N-1{\quad}(4)\\ \end{cases} DFS:⎩⎪⎨⎪⎧X(k) =DFS[x(n) ]=∑n=0N−1x(n) e−jN2πkn(1)x(n) =IDFS[X(k) ]=N1∑k=0N−1X(k) ejN2πkn(2)DFT:⎩⎪⎨⎪⎧X(k)=DFT[x(n)]=∑n=0N−1x(n)e−jN2πknk=0,1,...,N−1(3)x(n)=IDFT[X(k)]=N1∑k=0N−1X(k)ejN2πknn=0,1,...,N−1(4)
其实没有什么不同,只是对序列的取值有限定,这样的限定有如下结论:
-
如果 s ( n ) s(n) s(n)是周期序列,周期为 N N N,那么其一个周期 s 1 N ( n ) s_{1N}(n) s1N(n)的 N N N点 D F T DFT DFT就等于其 D F S DFS DFS的主值序列。即:
S ( k ) = D F T [ s 1 N ( n ) ] = S ( k ) ~ R N ( n ) = D F S [ s ( n ) ~ ] R N ( n ) {\color{blue}S(k)}=DFT[s_{1N}(n)]={\color{blue}\widetilde{S(k)}R_N(n)}=DFS[\widetilde{s(n)}]R_N(n) S(k)=DFT[s1N(n)]=S(k) RN(n)=DFS[s(n) ]RN(n) -
如果 s ( n ) s(n) s(n)是非周期序列,那么对其进行周期性延拓得到 s ( n ) ~ \widetilde{s(n)} s(n) 的DFS的主值序列就等于其DFT的结果。即:
S ( k ) ~ R N ( n ) = D F S [ s ( n ) ~ ] R N ( n ) = S ( k ) = D F T [ s ( n ) ] {\color{blue}\widetilde{S(k)}R_N(n)}=DFS[\widetilde{s(n)}]R_N(n)={\color{blue}S(k)}=DFT[s(n)] S(k) RN(n)=DFS[s(n) ]RN(n)=S(k)=DFT[s(n)]
DFT与FT/ZT的关系
设序列 x ( n ) x(n) x(n)的长度为M。
X ( z ) = Z T [ x ( n ) ] = ∑ n = 0 M − 1 x ( n ) z − n ( 1 ) X ( e j ω ) = D T F T [ x ( n ) ] = ∑ n = 0 M − 1 x ( n ) e − j ω n ( 2 ) X ( k ) = D F T [ x ( n ) ] N = ∑ n = 0 M − 1 x ( n ) W N k n = ∑ n = 0 M − 1 x ( n ) e − j 2 π N n k k = 0 , 1 , . . . , N − 1 ( 3 ) X(z)=ZT[x(n)]=\sum_{n=0}^{M-1}x(n)z^{-n}{\quad}(1)\\ X(e^{j\omega})=DTFT[x(n)]=\sum_{n=0}^{M-1}x(n)e^{-j{\omega}n}{\quad}(2)\\ X(k)=DFT[x(n)]_N=\sum_{n=0}^{M-1}x(n)W_N^{kn}\\ =\sum_{n=0}^{M-1}x(n)e^{-j\frac{2\pi}{N}nk}{\quad}k=0,1,...,N-1{\quad}(3) X(z)=ZT[x(n)]=n=0∑M−1x(n)z−n(1)X(ejω)=DTFT[x(n)]=n=0∑M−1x(n)e−jωn(2)X(k)=DFT[x(n)]N=n=0∑M−1x(n)WNkn=n=0∑M−1x(n)e−jN2πnkk=0,1,...,N−1(3)
-
序列 x ( n ) x(n) x(n)的N点DFT- X ( k ) X(k) X(k)是 x ( n ) x(n) x(n)的Z变换在单位圆上的N点等间隔采样;
X ( k ) = X ( z ) ∣ z = e j 2 π N k k = 0 , 1 , . . . , N − 1 X(k)=X(z)\big|_{\color{blue}z=e^{j\frac{2\pi}{N}k}}{\quad}k=0,1,...,N-1 X(k)=X(z)∣∣z=ejN2πkk=0,1,...,N−1 -
X ( k ) X(k) X(k)是 x ( n ) x(n) x(n)的傅里叶变换 X ( e j ω ) X(e^{j\omega}) X(ejω)在区间 [ 0 , 2 π ] [0,\ 2\pi] [0, 2π]上的N点等间隔采样;
X ( k ) = X ( e j ω ) ∣ w = 2 π N k k = 0 , 1 , . . . , N − 1 X(k)=X(e^{j\omega})\big|_{\color{blue}w=\frac{2\pi}{N}k}{\quad}k=0,1,...,N-1 X(k)=X(ejω)∣∣w=N2πkk=0,1,...,N−1
DFT的隐含周期性
∵ W N k = W N k + m N k , m 为 整 数 , N 为 自 然 数 ∴ X ( k + m N ) = . . . = X ( k ) {\because}{\quad}W_N^k=W_N^{k+mN}{\qquad}k,m为整数,N为自然数\\ {\therefore}{\quad}X(k+mN)=...=X(k) ∵WNk=WNk+mNk,m为整数,N为自然数∴X(k+mN)=...=X(k)
任何周期为N的周期序列
x
(
n
)
~
\widetilde{x(n)}
x(n)
都可以看做长度为N的有限长序列
x
(
n
)
x(n)
x(n)的周期性延拓序列,而
x
(
n
)
x(n)
x(n)是
x
(
n
)
~
\widetilde{x(n)}
x(n)
的一个周期,即:
x
(
n
)
~
=
∑
m
=
−
∞
+
∞
x
(
n
+
m
N
)
x
(
n
)
=
x
(
n
)
~
R
N
(
n
)
\widetilde{x(n)}=\sum_{m=-\infin}^{+\infin}x(n+mN)\\ x(n)=\widetilde{x(n)}R_N(n)
x(n)
=m=−∞∑+∞x(n+mN)x(n)=x(n)
RN(n)
有限长序列
x
(
n
)
x(n)
x(n)的N点DFT的结果
X
(
k
)
X(k)
X(k)恰好是
x
(
n
)
x(n)
x(n)的周期性延拓序列
x
(
(
n
)
)
N
x((n))_N
x((n))N的DFS的结果
X
(
k
)
~
\widetilde{X(k)}
X(k)
的主值序列,即:
X
(
k
)
=
X
(
k
)
~
R
N
(
k
)
X(k)=\widetilde{X(k)}R_N(k)
X(k)=X(k)
RN(k)
因此
X
(
k
)
X(k)
X(k)实质上就是
x
(
n
)
x(n)
x(n)的周期延拓序列
x
(
(
n
)
)
N
x((n))_N
x((n))N的频谱特性。
DFT的性质
线性
时/频域循环移位定理
时 域 循 环 移 位 定 理 { y ( n ) = x ( ( n + m ) ) N R N ( n ) Y ( k ) = D F T [ y ( n ) ] = W N − k m X ( k ) 频 域 循 环 移 位 定 理 { Y ( k ) = X ( ( k + l ) ) N R N ( k ) y ( n ) = I D F T [ Y ( K ) ] N = W N n l x ( n ) 时域循环移位定理 \begin{cases} & y(n)=x((n+m))_NR_N(n)\\ & Y(k)=DFT[y(n)]=W_N^{-km}X(k)\\ \end{cases} \\ 频域循环移位定理 \begin{cases} & Y(k)=X((k+l))_NR_N(k)\\ & y(n)=IDFT[Y(K)]_N=W_N^{nl}x(n) \end{cases} 时域循环移位定理{y(n)=x((n+m))NRN(n)Y(k)=DFT[y(n)]=WN−kmX(k)频域循环移位定理{Y(k)=X((k+l))NRN(k)y(n)=IDFT[Y(K)]N=WNnlx(n)
循环卷积定理
i f x ( n ) = x 2 ( n ) ∗ L x 1 ( n ) = [ ∑ m = 0 N − 1 x 2 ( m ) x 1 ( ( n − m ) ) N ] R N ( n ) h a v e X ( k ) = D F T [ x ( n ) ] N = X 1 ( k ) X 2 ( k ) X 1 ( k ) = D F T [ x 1 ( n ) ] X 2 ( k ) = D F T [ x 2 ( n ) ] if{\quad}x(n)=x_2(n){\color{blue}*_L}x_1(n)\\ =[\sum_{m=0}^{N-1}x_2(m)x_1((n-m))_N]R_N(n)\\ have{\quad}X(k)=DFT[x(n)]_N=X_1(k)X_2(k)\\ X_1(k)=DFT[x_1(n)]\\ X_2(k)=DFT[x_2(n)]\\ ifx(n)=x2(n)∗Lx1(n)=[m=0∑N−1x2(m)x1((n−m))N]RN(n)haveX(k)=DFT[x(n)]N=X1(k)X2(k)X1(k)=DFT[x1(n)]X2(k)=DFT[x2(n)]
复共轭序列的DFT及其对称性
{ x ( n ) = x e p ( n ) + x o p ( n ) X ( k ) = X R ( k ) + j X I ( k ) { X R ( k ) = D F T [ x e p ( n ) ] j X I ( k ) = D F T [ x o p ( n ) ] \begin{cases} &x(n)=x_{ep}(n)+x_{op}(n)\\ &X(k)=X_R(k)+jX_I(k)\\ \end{cases} \\ \begin{cases} &X_R(k)=DFT[x_{ep}(n)]\\ &jX_I(k)=DFT[x_{op}(n)]\\ \end{cases} {x(n)=xep(n)+xop(n)X(k)=XR(k)+jXI(k){XR(k)=DFT[xep(n)]jXI(k)=DFT[xop(n)]
线性卷积和循环卷积的关系
y c ( n ) = [ ∑ i = − ∞ ∞ y l ( n + i L ) ] R L ( n ) y_c(n)=\Big[\sum_{i=-\infin}^{\infin}y_l(n+iL)\Big]R_L(n) yc(n)=[i=−∞∑∞yl(n+iL)]RL(n)
即循环卷积等于线性卷积以L为周期进行周期延拓后的序列的主值序列,若要求循环卷积和线性卷积相等,则需要周期延拓后无混叠,即 L ≥ N + M − 1 L{\ge}N+M-1 L≥N+M−1。
频率域采样
由 X ( k ) X(k) X(k)恢复出 x ( n ) x(n) x(n)的条件
如何从x(n)N推导出x(n)呢?下面直接给出结论:
x
N
(
n
)
=
x
(
n
)
~
R
N
(
n
)
=
[
∑
i
=
−
∞
∞
x
(
n
+
i
N
)
]
R
N
(
n
)
x_N(n)=\widetilde{x(n)}R_N(n)\\ =\Big[\sum_{i=-\infin}^{\infin}x(n+iN)\Big]R_N(n)
xN(n)=x(n)
RN(n)=[i=−∞∑∞x(n+iN)]RN(n)
如果序列
x
(
n
)
x(n)
x(n)的长度为M,则只有当频域采样点数
N
≥
M
N{\ge}M
N≥M时,才有:
x
N
(
n
)
=
I
D
F
T
[
X
(
k
)
]
=
x
(
n
)
x_N(n)=IDFT\Big[X(k)\Big]=x(n)
xN(n)=IDFT[X(k)]=x(n)
即可由频域采样值
X
(
k
)
X(k)
X(k)恢复出原序列
x
(
n
)
x(n)
x(n),否则产生时域混叠现象。
如何由 X ( k ) X(k) X(k)恢复 X ( z ) X(z) X(z)和 X ( e j ω ) X(e^{j\omega}) X(ejω)
结论如下,省略推导:
X
(
z
)
=
∑
k
=
0
N
−
1
X
(
k
)
1
N
1
−
z
−
N
1
−
W
N
−
k
z
−
1
=
∑
k
=
0
N
−
1
X
(
k
)
ϕ
k
(
z
)
X(z)=\sum_{k=0}^{N-1}X(k)\frac{1}{N}\frac{1-z^{-N}}{1-W_N^{-k}z^{-1}}\\ =\sum_{k=0}^{N-1}X(k){\phi}_k(z)\\
X(z)=k=0∑N−1X(k)N11−WN−kz−11−z−N=k=0∑N−1X(k)ϕk(z)
将
z
=
e
j
ω
z=e^{j\omega}
z=ejω带入上式得:
X
(
e
j
ω
)
=
∑
k
=
0
N
−
1
X
(
k
)
ϕ
(
ω
−
2
π
N
k
)
ϕ
(
ω
)
=
1
N
s
i
n
(
ω
N
/
2
)
sin
(
ω
/
2
)
e
−
j
ω
(
N
−
1
2
)
X(e^{j\omega})=\sum_{k=0}^{N-1}X(k){\phi}({\omega}-\frac{2\pi}{N}k)\\ {\phi}(\omega)=\frac{1}{N}\frac{sin({\omega}N/2)}{\sin({\omega}/2)}e^{-j{\omega}(\frac{N-1}{2})}
X(ejω)=k=0∑N−1X(k)ϕ(ω−N2πk)ϕ(ω)=N1sin(ω/2)sin(ωN/2)e−jω(2N−1)
上式中
X
(
z
)
X(z)
X(z)表示内插公式,
ϕ
k
(
z
)
\phi_k(z)
ϕk(z)称为内插函数。
用DFT对信号进行频谱分析
对连续信号进行频谱分析
X a ( k F ) = T X ( k ) = T ⋅ D F T [ x ( n ) N ] k = 0 , 1 , . . . , N − 1 X_a(kF)=TX(k)=T{\cdot}DFT[x(n)_N]{\quad}k=0,1,...,N-1 Xa(kF)=TX(k)=T⋅DFT[x(n)N]k=0,1,...,N−1
上式表明,可以通过对连续信号采样并进行
D
F
T
DFT
DFT再乘
T
T
T,近似得到模拟信号频谱的周期延拓函数在第一个周期
[
0
,
F
s
]
\Big[0,F_s\Big]
[0,Fs]上的N点等间隔采样
X
a
(
k
F
)
X_a(kF)
Xa(kF)。
T
p
T_p
Tp和N可以按照下面两式进行选择:
{
N
>
2
f
c
F
T
p
>
1
F
\begin{cases} N > \frac{2f_c}{F}\\ T_p > \frac{1}{F} \end{cases}
{N>F2fcTp>F1
f
c
f_c
fc是信号最高频率,
F
F
F是谱分辨率,
T
p
T_p
Tp是信号持续时间。
对序列进行频谱分析
略
误差分析
混叠现象
采样速率必须满足采样定理,否则会在 ω = π \omega=\pi ω=π(对应模拟频率 f = F s / 2 f=F_s/2 f=Fs/2)附近发生频谱混叠现象。一般在采样前进行预滤波,滤除高于折叠频率 F s / 2 F_s/2 Fs/2的频率成分,以免发生频谱混叠现象。
栅栏效应
N点DFT是在频率区间 [ 0 , 2 π ] [0,2\pi] [0,2π]上对时域离散信号的频谱进行N点等间隔采样,而采样点之间的频谱是看不到的。对有限长序列,可以在原序列尾部补零;对无限长序列,可以增大截取长度及DFT变换区间长度,从而使频域采样间隔变小,增加频域采样点数和采样点位置,使原来漏掉的某些频谱成分被检测出来。
截断效应
实际中遇到的 x ( n ) x(n) x(n)可能是无限长的,用DFT对其进行频谱分析时,必须将其截短,形成有限长序列 y ( n ) = x ( n ) w ( n ) y(n)=x(n)w(n) y(n)=x(n)w(n), w ( n ) w(n) w(n)称为窗函数,长度为N。