数字信号处理-基础一

文章目录

数字频率与模拟频率的关系与特点

link1link2link3

数字频率与模拟频率的定义

模拟频率 f f f:每秒经历多少个周期,单位为 H z Hz Hz

模拟角频率 Ω \Omega Ω:每秒经历多少弧度,单位为 r a d / s rad/s rad/s

数字角频率 ω \omega ω:采样点之间的弧度,单位为 r a d rad rad

数字信号是由模拟信号采样而来,采样频率不一样,采样点的时间就不一样。因此用每秒经历多少个周期已无多大意义,所以。
{ f → s − 1 Ω = 2 π f → r a d / s ω = Ω / f s = Ω T s → r a d ω = Ω / f s = 2 π f / f s ( 1 − 1 ) \begin{cases} f{\to}s^{-1}\\ \Omega=2{\pi}f{\to}rad/s\\ \omega={\Omega}/f_s={\Omega}T_s{\to}rad\\ \end{cases} \\ \omega={\Omega}/f_s=2{\pi}{\color{blue}f/fs}{\qquad}(1-1) fs1Ω=2πfrad/sω=Ω/fs=ΩTsradω=Ω/fs=2πf/fs(11)
对于上式(1-1)的解释:

  • 数字角频率 ω \omega ω是模拟角频率 Ω \Omega Ω对采样频率 f s f_s fs的归一化;
  • f / f s f/f_s f/fs是一个无量纲的数, 2 π 2{\pi} 2π代表着弧度;
  • 即此频率(数字角频率: r a d rad rad)非彼频率(模拟角频率: r a d / s rad/s rad/s)。

数字角频率与采样频率有关:
( . . . , − 2 π , − π , 0 , π , 2 π , . . . ) ( . . . , f s , − 0.5 f s , 0 , 0.5 f s , f s , . . . ) (...,-2\pi,-\pi,0,\pi,2\pi,...)\\(...,fs,-0.5fs,0,0.5fs,fs,...) (...,2π,π,0,π,2π,...)(...,fs,0.5fs,0,0.5fs,fs,...)
在这里插入图片描述

为什么模拟角频率和数字角频率不一样

一个单位是 r a d / s \color{blue}rad/s rad/s,另一个是 r a d \color{blue}rad rad,肯定就不一样了啊。

模拟角频率 Ω ⊂ ( − ∞ , + ∞ ) \Omega{\subset}(-\infin,+\infin) Ω(,+),而数字角频率 ω ⊂ ( − π , π ) \omega{\subset}(-\pi,\pi) ω(π,π),当然也可以是 ( 0 , 2 π ) (0,2\pi) (0,2π)。但由于数字角频率是具有周期性的,所以也可以认为数字角频率 ω ⊂ ( − ∞ , + ∞ ) \omega{\subset(-\infin,+\infin)} ω(,+),只不过是周期性的。

f s = 1 H z f_s=1Hz fs=1Hz,当 Ω = π / 8 \Omega=\pi/8 Ω=π/8 Ω = 17 π / 8 \Omega=17\pi/8 Ω=17π/8时,抽样序列如下:可以看到虽然模拟角频率增加了 2 π 2\pi 2π,但是由于采样点数和采样值都相同,所以实际的离散序列也是一样的。这也体现出了离散序列的角频率是以 2 π 2\pi 2π为周期的。

在这里插入图片描述

MATLAB代码如下:

step = 64;  % 用于产生模拟信号的精度
t = 0:1/(2*step):20;
t = t';
w1 = pi / 8;
x1 = cos(w1 .* t);
w2 = pi * 17 / 8;
x2 = cos(w2 .* t);

fs = 1;
ts = 0:1/fs:20;
ts = ts';
% 下面的作用是查找ts元素离t中最近元素的索引
D = abs(bsxfun(@minus, ts.', t));
M = min(D, [], 1);
[Index, ~] = find(bsxfun(@eq, M, D));
x1n = x1(Index);  % x1的抽样序列
x2n = x2(Index);  % x2的抽样序列

subplot(211); plot(t, x1, 'b'); 
hold on; stem(ts, x1n, 'r');
title('$$\Omega=\frac{\pi}{8}$$', 'Interpreter', 'latex');
subplot(212); plot(t, x2, 'b'); 
hold on; stem(ts, x2n, 'r');
title('$$\Omega=\frac{17\pi}{8}$$', 'Interpreter', 'latex');
xlabel(['fs=', num2str(fs), 'Hz']);

时域离散信号和时域离散系统

时域离散信号、系统!!!

时域离散信号

常用的典型序列

MATLAB产生各种典型序列

序列的运算

加、减、乘、除、反转等。

时域离散系统

线性系统

当系统T的输入为 x 1 ( n ) x_1(n) x1(n)时,输出是 y 1 ( n ) y_1(n) y1(n);输入为 x 2 ( n ) x_2(n) x2(n)时,输出是 y 2 ( n ) y_2(n) y2(n)。若满足线性,则输入为 x 1 ( n ) + x 2 ( n ) x_1(n)+x_2(n) x1(n)+x2(n)时,输出应为 y 1 ( n ) + y 2 ( n ) y_1(n)+y_2(n) y1(n)+y2(n);且输入为 a x 1 ( n ) ax_1(n) ax1(n)时,输出是 a y 1 ( n ) ay_1(n) ay1(n)
i f { y 1 ( n ) = T [ x 1 ( n ) ] y 2 ( n ) = T [ x 2 ( n ) ] h a v e { T [ x 1 ( n ) + x 2 ( n ) ] = y 1 ( n ) + y 2 ( n ) T [ a x 1 ( n ) ] = a y 1 ( n ) if{\quad} \begin{cases} y_1(n)=T\big[x_1(n)\big]\\ y_2(n)=T\big[x_2(n)\big]\\ \end{cases} \\ have{\quad} \begin{cases} T\big[x_1(n)+x_2(n)\big]=y_1(n)+y_2(n)\\ T\big[ax_1(n)\big]=ay_1(n) \end{cases} if{y1(n)=T[x1(n)]y2(n)=T[x2(n)]have{T[x1(n)+x2(n)]=y1(n)+y2(n)T[ax1(n)]=ay1(n)

时不变系统

i f y ( n ) = T [ x ( n ) ] h a v e y ( n − n 0 ) = T [ x ( n − n 0 ) ] if{\quad}y(n)=T\big[x(n)\big]\\ have{\quad}y(n-n_0)=T\big[x(n-n_0)\big] ify(n)=T[x(n)]havey(nn0)=T[x(nn0)]

线性时不变系统及其输入与输出之间的关系

系 统 单 位 冲 激 响 应 : h ( n ) = T [ δ ( n ) ] 输 入 信 号 : x ( n ) = ∑ m = − ∞ + ∞ x ( m ) δ ( n − m ) 则 输 出 为 : y ( n ) = T [ ∑ m = − ∞ + ∞ x ( m ) δ ( n − m ) ] = ∑ m = − ∞ + ∞ x ( m ) [ δ ( n − m ) ] 根 据 时 不 变 性 质 有 : y ( n ) = ∑ m = − ∞ + ∞ x ( m ) h ( n − m ) = x ( n ) ∗ h ( n ) 系统单位冲激响应:{\quad}h(n)=T\Big[\delta(n)\Big]\\ 输入信号:x(n)=\sum_{m=-\infin}^{+\infin}x(m)\delta(n-m)\\ 则输出为:y(n)=T\Big[\sum_{m=-\infin}^{+\infin}x(m)\delta(n-m)\Big]\\ =\sum_{m=-\infin}^{+\infin}x(m)\Big[\delta(n-m)\Big]\\ 根据时不变性质有:\\ y(n)=\sum_{m=-\infin}^{+\infin}x(m)h(n-m)=x(n)*h(n) h(n)=T[δ(n)]x(n)=m=+x(m)δ(nm)y(n)=T[m=+x(m)δ(nm)]=m=+x(m)[δ(nm)]y(n)=m=+x(m)h(nm)=x(n)h(n)

系统的因果性和稳定性

系统当前的输出只与之前的输入有关,后之后的输入无关。
h ( n ) = 0 n < 0 h(n)=0{\quad}n<0 h(n)=0n<0

时域离散系统的输入输出描述法—线性常系数差分方程

线性常系数差分方程

y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ i = 1 N a i y ( n − i ) o r ∑ i = 0 N a i y ( n − i ) = ∑ i = 0 M b i x ( n − i ) a 0 = 1 y(n)=\sum_{i=0}^{M}b_ix(n-i)-\sum_{i=1}^{N}a_iy(n-i)\\ or{\quad}\sum_{i=0}^{N}a_iy(n-i)=\sum_{i=0}^{M}b_ix(n-i){\quad}a_0=1 y(n)=i=0Mbix(ni)i=1Naiy(ni)ori=0Naiy(ni)=i=0Mbix(ni)a0=1

差分方程的阶数是用方程 y ( n − i ) y(n-i) y(ni)项中 i i i最大取值与最小取值之差确定的,即上式是N阶线性常系数差分方程。

线性常系数差分方程的求解

  • 经典解法:齐次解、特解
  • 递推解法
  • 交换域方法:将差分方程变换到 z z z
  • 还可以由差分方程求出系统的单位脉冲响应,然后与已知的输入序列进行卷积运算。

模拟信号数字处理方法

采样定理及A/D变换

x a ( t ) x_a(t) xa(t)是模拟信号、 p δ ( t ) p_{\delta}(t) pδ(t)是单位冲激序列、 x a ^ ( t ) \hat{x_a}(t) xa^(t)是经理想采样后的信号。
p δ ( t ) = ∑ n = − ∞ + ∞ δ ( t − n T ) x a ^ ( t ) = x a ( t ) p δ ( t ) { X a ( j ω ) = F [ x a ( t ) ] X a ^ ( j ω ) = F [ x a ^ ( t ) ] P δ ( j ω ) = F [ p δ ( t ) ] p_{\delta}(t)=\sum_{n=-\infin}^{+\infin}\delta(t-nT)\\ \hat{x_a}(t)=x_a(t)p_{\delta}(t)\\ \begin{cases} X_a(j\omega)=\mathscr{F}\Big[x_a(t)\Big]\\ \hat{X_a}(j\omega)=\mathscr{F}\Big[\hat{x_a}(t)\Big]\\ P_{\delta}(j\omega)=\mathscr{F}\Big[p_{\delta}(t)\Big]\\ \end{cases} pδ(t)=n=+δ(tnT)xa^(t)=xa(t)pδ(t)Xa(jω)=F[xa(t)]Xa^(jω)=F[xa^(t)]Pδ(jω)=F[pδ(t)]
下面推导理想采样信号的频谱与原模拟信号频谱的关系:
X a ^ ( j Ω ) = 1 2 π X a ( j Ω ) ∗ P δ ( j Ω ) . . . X a ^ ( j Ω ) = 1 T ∑ k = − ∞ + ∞ X a ( j Ω − j k Ω s ) \hat{X_a}(j\Omega)=\frac{1}{2\pi}X_a(j\Omega)*P_{\delta}(j\Omega)\\ ...\\ \hat{X_a}(j\Omega)=\frac{1}{T}\sum_{k=-\infin}^{+\infin}X_a(j\Omega-jk\Omega_s) Xa^(jΩ)=2π1Xa(jΩ)Pδ(jΩ)...Xa^(jΩ)=T1k=+Xa(jΩjkΩs)
上式表明理想采样信号的频谱原模拟信号频谱沿频率轴,每间隔采样角频率 Ω s = 2 π F S = 2 π T \Omega_s=2{\pi}F_S=\frac{2{\pi}}{T} Ωs=2πFS=T2π重复出现一次,并叠加而形成的周期函数。或者说理想采样信号的频谱是原模拟信号的频谱以 Ω s \Omega_s Ωs为周期,进行周期性延拓而成的。

因此,若要理想采样信号的频谱不重合,则需要满足: Ω s ≥ w m a x \Omega_s{\ge}w_{max} Ωswmax F s ≥ f m a x F_s{\ge}f_{max} Fsfmax,这就是采样定理

数字序列转换成模拟信号

如果 x ( n ) x(n) x(n)是在满足抽样定理的条件下得到的,那么可以通过一个低通滤波器不失真地将原模拟信号 x a ( t ) x_a(t) xa(t)恢复出来,低通滤波器的传输函数如下:
G ( j Ω ) = { T ∣ Ω ∣ < 1 2 Ω s 0 ∣ Ω ∣   ≥   1 2 Ω s G(j\Omega)= \begin{cases} T & \big|\Omega\big|<\frac{1}{2}\Omega_s\\ 0 & \big|\Omega\big|\ {\ge}\ \frac{1}{2}\Omega_s\\ \end{cases} G(jΩ)={T0Ω<21ΩsΩ  21Ωs
其时域表达式为:
g ( t ) = 1 2 π ∫ − ∞ + ∞ G ( j Ω ) e j Ω t d Ω = 1 2 π ∫ − Ω s / 2 + Ω s / 2 T e j Ω t d Ω = sin ⁡ ( Ω s t / 2 ) Ω s t / 2 ∵ Ω s = 2 π F s = 2 π / T ∴ g ( t ) = sin ⁡ ( π t ) / T π t / T g(t)=\frac{1}{2\pi}\int_{-\infin}^{+\infin}G(j\Omega)e^{j{\Omega}t}d_{\Omega}=\frac{1}{2\pi}\int_{-\Omega_s/2}^{+\Omega_s/2}Te^{j{\Omega}t}d_{\Omega}=\frac{\sin({\Omega_s}t/2)}{{\Omega_s}t/2}\\ {\because}{\qquad}{\Omega_s}=2{\pi}F_s=2{\pi}/T\\ {\therefore}g(t)=\frac{\sin({\pi}t)/T}{{\pi}t/T} g(t)=2π1+G(jΩ)ejΩtdΩ=2π1Ωs/2+Ωs/2TejΩtdΩ=Ωst/2sin(Ωst/2)Ωs=2πFs=2π/Tg(t)=πt/Tsin(πt)/T
g ( t ) g(t) g(t)被称为内插函数。

x ( n ) = x a ( n T ) x(n)=x_a(nT) x(n)=xa(nT)是经 x a ( t ) x_a(t) xa(t)满足采样定理采样后的离散信号,我们现在知道离散信号,如何恢复出模拟信号呢?转换公式如下(详细推导见DSP书第26页):
x a ( t ) = ∑ n = − ∞ + ∞ x a ( n T ) sin ⁡ [ π ( t − n T ) ] / T π ( t − n T ) / T x_a(t)=\sum_{n=-\infin}^{+\infin}x_a(nT)\frac{\sin\Big[{\pi}(t-nT)\Big]\Big/T}{{\pi}(t-nT)\Big/T} xa(t)=n=+xa(nT)π(tnT)/Tsin[π(tnT)]/T
实际中采用D/AC完成数字信号到模拟信号的转换,包括三部分:解码器、零阶保持器和平滑滤波器。框图如下:

x_a(nT)
x'_a(t)
x_a(t)
xn
解码器
零阶保持器
平滑滤波器
out

由时域离散信号 x a ( n T ) x_a(nT) xa(nT)恢复模拟信号的过程是内插过程。

时域离散信号和系统的频域分析

时域离散信号的傅里叶变换的定义及性质

x ( t ) x(t) x(t)的傅里叶变换是 X ( e j ω ) X(e^{j\omega}) X(ejω) x ( n ) x(n) x(n)的傅里叶变换也是 X ( e j ω ) X(e^{j\omega}) X(ejω),在频域都是连续的。

DTFT的定义

推导:
∵ x ( n ) = x ( t ) δ T ( t ) = x ( t ) ∑ n = − ∞ ∞ δ ( t − n T ) ∴ X ( j ω ) = F [ x ( n ) ] = ∫ − ∞ + ∞ x ( t ) ∑ n = − ∞ ∞ δ ( t − n T ) e − j ω t d t = ∑ n = − ∞ ∞ ∫ − ∞ + ∞ x ( t ) δ ( t − n T ) e − j ω t d t = ∑ n = − ∞ ∞ x ( n T ) e − j ω n T ∫ − ∞ + ∞ δ ( t − n T ) d t = ∑ n = − ∞ ∞ x ( n T ) e − j ω n T {\because}{\quad}x(n)=x(t){\delta_T}(t)=x(t)\sum_{n=-\infin}^{\infin}{\delta}(t-nT)\\ {\therefore}{\quad} X(j\omega)={\mathscr{F}}[x(n)]=\int_{-\infin}^{+\infin}x(t)\sum_{n=-\infin}^{\infin}{\delta}(t-nT)e^{-j{\omega}t}d_t\\ =\sum_{n=-\infin}^{\infin}\int_{-\infin}^{+\infin}x(t)\delta(t-nT)e^{-j{\omega}t}d_t\\ =\sum_{n=-\infin}^{\infin}x(nT)e^{-j{\omega}nT}\int_{-\infin}^{+\infin}\delta(t-nT)d_t\\ =\sum_{n=-\infin}^{\infin}x(nT)e^{-j{\omega}nT} x(n)=x(t)δT(t)=x(t)n=δ(tnT)X(jω)=F[x(n)]=+x(t)n=δ(tnT)ejωtdt=n=+x(t)δ(tnT)ejωtdt=n=x(nT)ejωnT+δ(tnT)dt=n=x(nT)ejωnT

T = 1 T=1 T=1,则变为:
x ( n ) = x a ( n T ) = x ( t ) ∣ t = n T { X ( e j ω ) = ∑ n = − ∞ + ∞ x ( n ) e − j ω n x ( n ) = 1 2 π ∫ − π π X ( e j ω ) e j ω n d ω x(n)=x_a(nT)=x(t)\Big|_{t=nT}\\ \begin{cases} X(e^{j\omega})=\sum_{n=-\infin}^{+\infin}x(n)e^{-j{\omega}n}\\ \\ x(n)=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{j\omega})e^{j{\omega}n}d_{\omega} \end{cases} x(n)=xa(nT)=x(t)t=nTX(ejω)=n=+x(n)ejωnx(n)=2π1ππX(ejω)ejωndω

DTFT的性质

  • 周期性: X ( e j ω ) = X ( e j ω + 2 π M ) X(e^{j\omega})=X(e^{j{\omega+2{\pi}M}}) X(ejω)=X(ejω+2πM),周期为 2 π 2\pi 2π

  • 线性

  • 时移和频移:
    F [ x ( n − n 0 ) ] = e − j ω n 0 X ( e j ω ) F [ e j Ω 0 n x ( n ) ] = X ( e j ( ω − Ω 0 ) ) \mathscr{F}\Big[x(n-n_0)\Big]=e^{-j{\omega}n_0}X(e^{j\omega})\\ \mathscr{F}\Big[e^{j{\Omega_0}n}x(n)\Big]=X(e^{j({\omega}-{\Omega_0})}) F[x(nn0)]=ejωn0X(ejω)F[ejΩ0nx(n)]=X(ej(ωΩ0))

  • 对称性: x e ( n ) x_e(n) xe(n)为共轭对称序列(其实部是偶函数、虚部是奇函数,即满足 x e ( n ) = x e ∗ ( − n ) x_e(n)=x_e^{*}(-n) xe(n)=xe(n)); x o ( n ) x_o(n) xo(n)为共轭反对称序列(其实部是奇函数、虚部是偶函数,即满足 x o ( n ) = − x o ∗ ( − n ) x_o(n)=-x_o^{*}(-n) xo(n)=xo(n))。
    { x ( n ) = x r ( n ) + j x i ( n ) X ( e j ω ) = X e ( e j ω ) + X o ( e j ω ) { x ( n ) = x e ( n ) + x o ( n ) X ( e j ω ) = X R ( e j ω ) + j X I ( e j ω ) \begin{cases} x(n)={\color{blue}x_r(n)}+{\color{red}jx_i(n)}\\ \\ X(e^{j\omega})={\color{blue}X_e(e^{j\omega})}+{\color{red}X_o(e^{j\omega})} \end{cases} \\ \begin{cases} x(n)={\color{blue}x_e(n)}+{\color{red}x_o(n)}\\ \\ X(e^{j\omega})={\color{blue}X_R(e^{j\omega})}+{\color{red}jX_I(e^{j\omega})} \end{cases} x(n)=xr(n)+jxi(n)X(ejω)=Xe(ejω)+Xo(ejω)x(n)=xe(n)+xo(n)X(ejω)=XR(ejω)+jXI(ejω)

  • 频域卷积定理:

若 y ( n ) = h ( n ) x ( n ) 则 有 Y ( e j ω ) = 1 2 π H ( e j ω ) ∗ X ( e j ω ) = 1 2 π ∫ − π π H ( e j θ ) X ( e j θ ) d θ 若{\quad}y(n)=h(n)x(n)\\ 则有{\quad}Y(e^{j\omega})=\frac{1}{2\pi}H(e^{j\omega})*X(e^{j\omega})\\ =\frac{1}{2\pi}\int_{-\pi}^{\pi}H(e^{j\theta})X(e^{j\theta})d_{\theta} y(n)=h(n)x(n)Y(ejω)=2π1H(ejω)X(ejω)=2π1ππH(ejθ)X(ejθ)dθ

  • 帕斯维尔定理:信号时域的能量和频域的能量的关系。
    ∑ n = − ∞ + ∞ ∣ x ( n ) ∣ 2 = 1 2 π ∫ − π π ∣ X ( e j ω ) ∣ 2 d ω \sum_{n=-\infin}^{+\infin}\big|x(n)\big|^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\big|X(e^{j\omega})\big|^2d_{\omega} n=+x(n)2=2π1ππX(ejω)2dω

周期序列的离散傅里叶级数及傅里叶变换表达式

周期序列的离散傅里叶级数(DFS)

X ( k ) ~ = D F S [ x ( n ) ~ ] = ∑ n = 0 N − 1 x ( n ) ~ e − j 2 π N k n ( 1 ) x ( n ) ~ = I D F S [ X ( k ) ~ ] = 1 N ∑ k = 0 N − 1 X ( k ) ~ e j 2 π N k n ( 2 ) \widetilde{X(k)}=DFS[\widetilde{x(n)}]=\sum_{n=0}^{N-1}\widetilde{x(n)}e^{-j{\frac{2\pi}{N}}kn}{\qquad}(1)\\ \widetilde{x(n)}=IDFS[\widetilde{X(k)}]=\frac{1}{N}\sum_{k=0}^{N-1}\widetilde{X(k)}e^{j{\frac{2\pi}{N}}kn}{\qquad}(2) X(k) =DFS[x(n) ]=n=0N1x(n) ejN2πkn(1)x(n) =IDFS[X(k) ]=N1k=0N1X(k) ejN2πkn(2)

基波分量的频率为 2 π / N {2\pi}/N 2π/N,幅度是 ( 1 / N ) X ~ ( 1 ) (1/N){\widetilde{X}}(1) (1/N)X (1),一个周期序列可以用其 D F S DFS DFS系数 X ~ ( k ) \widetilde{X}(k) X (k)表示它的频谱分布规律。

周期序列的傅里叶变换表达式(FT)

复指数序列 e j ω 0 n e^{j{\omega_0}n} ejω0n F T FT FT

首先推导复指数序列 e j ω 0 n e^{j{\omega_0}n} ejω0n的傅里叶变换如下:
X ( e j ω ) = F [ e j ω 0 n ] = ∑ r = − ∞ + ∞ 2 π δ ( ω − ( ω 0 + 2 π r ) ) r 为 整 数 X(e^{j\omega})=\mathscr{F}[e^{j{\omega_0}n}]=\sum_{r=-\infin}^{+\infin}2{\pi}\delta\Big({\omega}-({\omega_0}+2{\pi}r)\Big){\quad}r为整数 X(ejω)=F[ejω0n]=r=+2πδ(ω(ω0+2πr))r
上式表明:复指数序列 e j ω 0 n e^{j{\omega_0}n} ejω0n F T FT FT是在 ω 0 + 2 π r \omega_0+2{\pi}r ω0+2πr处的单位冲激函数,强度为 2 π 2\pi 2π

周期序列的 F T FT FT

一般周期序列都能表示成不同复指数序列 e j ω n e^{j{\omega}n} ejωn的叠加,因此再根据线性就可以得出该周期序列的傅里叶变换:
x ( n ) ~ = a 0 e j ω 0 n + a 1 e j ω 1 n + . . . + a m e j ω m n \widetilde{x(n)}=a_0e^{j{\omega_0}n}+a_1e^{j{\omega_1}n}+...+a_me^{j{\omega_m}n}\\ x(n) =a0ejω0n+a1ejω1n+...+amejωmn
或者这样考虑,对一般周期序列 x ( n ) ~ \widetilde{x(n)} x(n) 展开成 D F S DFS DFS,第k次谐波为 ( X ( k ) ~ / N ) e j 2 π N k n (\widetilde{X(k)}/N)e^{j\frac{2\pi}{N}kn} (X(k) /N)ejN2πkn,类似于复指数序列的 F T FT FT,其 F T FT FT为:
∑ r = − ∞ + ∞ 2 π X ( k ) ~ N δ ( ω − ( 2 π N k + 2 π r ) ) r 为 整 数 \color{blue}\sum_{r=-\infin}^{+\infin}2{\pi}\frac{\widetilde{X(k)}}{N}\delta\Big({\omega}-({\frac{2\pi}{N}k}+2{\pi}r)\Big){\quad}r为整数 r=+2πNX(k) δ(ω(N2πk+2πr))r
上面是第k次谐波的 F T FT FT,那么整个周期序列的 F T FT FT为:
X ( e j ω ) = F [ x ( n ) ~ ] = ∑ k = 0 N − 1 ∑ r = − ∞ + ∞ 2 π X ( k ) ~ N δ ( ω − ( 2 π N k + 2 π r ) ) r 为 整 数 X(e^{j\omega})={\mathscr{F}}[\widetilde{x(n)}]=\sum_{k=0}^{N-1}{\color{blue}\sum_{r={-\infin}}^{+\infin}2{\pi}\frac{{\widetilde{X(k)}}}{N}\delta\Big({\omega}-({\frac{2\pi}{N}k}+2{\pi}r)\Big){\quad}r为整数}\\ X(ejω)=F[x(n) ]=k=0N1r=+2πNX(k) δ(ω(N2πk+2πr))r
式中, K = 0 , 1 , 2 , . . . , N − 1 K=0,1,2,...,N-1 K=0,1,2,...,N1。如果让k在 − ∞ -\infin + ∞ +\infin +区间变换,上式可简化为:
X ( e j ω ) = ∑ k = − ∞ ∞ 2 π X ( k ) ~ N δ ( ω − 2 π N k ) 式 中 X ( k ) ~ = ∑ n = 0 N − 1 x ( n ) ~ e − j 2 π N k n X(e^{j\omega})=\sum_{k={-\infin}}^{\infin}{2\pi}\frac{\widetilde{X(k)}}{N}\delta(\omega-\frac{2\pi}{N}k)\\ 式中{\qquad}{\widetilde{X(k)}}=\sum_{n=0}^{N-1}\widetilde{x(n)}e^{-j{\frac{2\pi}{N}}kn} X(ejω)=k=2πNX(k) δ(ωN2πk)X(k) =n=0N1x(n) ejN2πkn
对于同一个周期信号,其DTS和FT的模的形状是一样的,不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。因此周期序列的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数的画法。

周期序列的 F T FT FT与周期信号 F T FT FT的联系

还记得周期信号 f T ( t ) f_T(t) fT(t)的傅里叶变换 ( F T ( j ω ) ) (F_T(j\omega)) (FT(jω))是什么吗?(省略掉推导):
F T ( j w ) = ∑ n = − ∞ ∞ 2 π F n δ ( ω − n ω 0 ) F ( e j ω ) = ∑ k = 0 N − 1 ∑ r = − ∞ + ∞ 2 π F ( k ) ~ N δ ( ω − ( 2 π N k + 2 π r ) ) r 为 整 数 F_T(jw)=\sum_{n=-\infin}^{\infin}2{\pi}F_n{\delta}(\omega-n\omega_0)\\ F(e^{j\omega})=\sum_{k=0}^{N-1}{\color{blue}\sum_{r={-\infin}}^{+\infin}2{\pi}\frac{{\widetilde{F(k)}}}{N}\delta\Big({\omega}-({\frac{2\pi}{N}k}+2{\pi}r)\Big){\quad}r为整数}\\ FT(jw)=n=2πFnδ(ωnω0)F(ejω)=k=0N1r=+2πNF(k) δ(ω(N2πk+2πr))r
上式表明:周期信号的傅里叶变换由无穷多个出现在谐波频率 n ω 0 n\omega_0 nω0上的冲激函数组成,每一冲激的强度为傅里叶系数 F n F_n Fn乘上 2 π 2\pi 2π

看出来周期序列周期信号的傅里叶变换有什么关系了吗?其实两者是一样的:

  • 都是由不同位置的冲激叠加而成;
  • 冲激的强度都是傅氏系数乘上 2 π 2\pi 2π(复指数序列的系数为1)。

但也有不同点,就是冲激位置的规律有点不一样:

  • 周期信号的冲激在谐波频率 n ω 0 n\omega_0 nω0
  • 周期序列的冲激在 2 π N k + 2 π r , r \frac{2{\pi}}{N}k+2{\pi}r,r N2πk+2πr,r为整数​处,具有周期性为 2 π 2\pi 2π

为什么会出现周期性呢?并且周期为 2 π 2\pi 2π,请看开头的数字频率与模拟频率的关系与特点

时域离散信号的FT与模拟信号FT之间的关系

X ( e j Ω T ) = 1 T ∑ k = − ∞ ∞ X a ( j Ω − j k Ω s ) X ( e j ω ) = 1 T ∑ k = − ∞ ∞ X a ( j ω − 2 π k T ) Ω s = 2 π F s = 2 π T X(e^{j{\Omega}T})=\frac{1}{T}\sum_{k=-\infin}^{\infin}X_a(j\Omega-jk\Omega_s)\\ X(e^{j\omega})=\frac{1}{T}\sum_{k=-\infin}^{\infin}X_a(j\frac{\omega-2{\pi}k}{T})\\ \Omega_s=2{\pi}F_s=\frac{2\pi}{T} X(ejΩT)=T1k=Xa(jΩjkΩs)X(ejω)=T1k=Xa(jTω2πk)Ωs=2πFs=T2π

上式表明:时域离散信号的频谱也是模拟信号频谱的周期性延拓,周期为 Ω s = 2 π F s = 2 π T \Omega_s=2{\pi}F_s=\frac{2{\pi}}{T} Ωs=2πFs=T2π

序列的 Z Z Z变换

Z变换的定义及与序列的FT的关系

X ( z ) = d e f = ∑ n = − ∞ + ∞ x ( n ) z − n ∑ n = − ∞ + ∞ ∣ x ( n ) z − n ∣ < ∞ X(z)=^{def}=\sum_{n=-\infin}^{+\infin}x(n)z^{-n}\\ \sum_{n=-\infin}^{+\infin}\Big|x(n)z^{-n}\Big|<{\infin}\\ X(z)=def=n=+x(n)znn=+x(n)zn<

Z Z Z变换的收敛域一般是一个环带状,即 R x − < ∣ z ∣ < R x + R_{x-}<\big|z\big|<R_{x+} Rx<z<Rx+。如果 Z Z Z变换的收敛域包括单位圆,那么:
X ( e j ω ) = X ( z ) ∣ z = e j ω X(e^{j\omega})=X(z)\Big|_{z=e^{j\omega}} X(ejω)=X(z)z=ejω
即单位圆上的Z变换就是序列的傅里叶变换(前提是在单位圆上收敛)。

Z变换的性质

X ( z ) = Z [ x ( n ) ] R x − < ∣ z ∣ < R x + X(z)=\mathscr{Z}\big[x(n)\big]{\quad}R_{x-}<\big|z\big|<R_{x+} X(z)=Z[x(n)]Rx<z<Rx+,则有如下性质:

  • 线性

  • 移位性质:
    Z [ x ( n − n 0 ) ] = z − n 0 X ( z ) R x − < ∣ z ∣ < R x + \mathscr{Z}\big[x(n-n_0)\big]=z^{-n_0}X(z){\quad}R_{x-}<\big|z\big|<R_{x+} Z[x(nn0)]=zn0X(z)Rx<z<Rx+

  • 序列乘以指数序列的性质:
    y ( n ) = a n x ( n ) Y ( z ) = Z [ a n x ( n ) ] = X ( a − 1 Z ) ∣ a ∣ R x − < ∣ z ∣ < ∣ a ∣ R x + y(n)=a^{n}x(n)\\ Y(z)=\mathscr{Z}\big[a^{n}x(n)\big]=X(a^{-1}Z){\quad}|a|R_{x-}<\big|z\big|<|a|R_{x+} y(n)=anx(n)Y(z)=Z[anx(n)]=X(a1Z)aRx<z<aRx+

  • 序列乘以n的ZT
    X ( z ) = Z [ n x ( n ) ] = − z d X ( z ) d z R x − < ∣ z ∣ < R x + X(z)=\mathscr{Z}\big[nx(n)\big]=-z\frac{dX(z)}{dz}{\quad}R_{x-}<\big|z\big|<R_{x+} X(z)=Z[nx(n)]=zdzdX(z)Rx<z<Rx+

  • 复共轭序列的ZT
    X ( z ) = Z [ x ∗ ( n ) ] = X ∗ ( z ∗ ) R x − < ∣ z ∣ < R x + X(z)=\mathscr{Z}\big[x^{*}(n)\big]=X^{*}(z^{*}){\quad}R_{x-}<\big|z\big|<R_{x+} X(z)=Z[x(n)]=X(z)Rx<z<Rx+

  • 初值定理: x ( n ) x(n) x(n)是因果序列,则:
    x ( 0 ) = lim ⁡ z → ∞ X ( z ) x(0)=\lim_{z{\to}\infin}X(z) x(0)=zlimX(z)

  • 终值定理: x ( n ) x(n) x(n)是因果序列,其 Z Z Z变换的极点除可以有一个一阶极点在 z = 1 z=1 z=1上,其它极点都在单位圆内,则:
    lim ⁡ n → ∞ x ( n ) = lim ⁡ z → 1 ( z − 1 ) X ( z ) \lim_{n{\to}\infin}x(n)=\lim_{z{\to}1}(z-1)X(z) nlimx(n)=z1lim(z1)X(z)

  • 时域卷积定理: W ( z ) W(z) W(z)的收敛域就是 X ( z ) X(z) X(z) Y ( z ) Y(z) Y(z)的公共收敛域。
    W ( z ) = Z [ x ( n ) ∗ y ( n ) ] = X ( z ) Y ( z ) R w − < ∣ z ∣ < R w + { R w + = min ⁡ [ R x + , R y + ] R w − = max ⁡ [ R x − , R y − ] W(z)=\mathscr{Z}\big[x(n)^{*}y(n)\big]=X(z)Y(z){\quad}R_{w-}<\big|z\big|<R_{w+}\\ \begin{cases} R_{w+}=\min{\big[R_{x+},R_{y+}\big]}\\ R_{w-}=\max{\big[R_{x-},R_{y-}\big]}\\ \end{cases} W(z)=Z[x(n)y(n)]=X(z)Y(z)Rw<z<Rw+{Rw+=min[Rx+,Ry+]Rw=max[Rx,Ry]

  • 复卷积定理:不常用

  • 帕斯维尔定理:不常用

利用Z变换分析信号和系统的频响特性

频率响应函数与系统函数

设系统初始状态为0,系统对 δ ( n ) \delta(n) δ(n)的响应 h ( n ) h(n) h(n)的傅里叶变换 H ( e j ω ) H(e^{j\omega}) H(ejω)称为系统的频率响应函数,即:
H ( e j ω ) = ∑ n = − ∞ + ∞ h ( n ) e − j ω n = ∣ H ( e j ω n ) ∣ e j ϕ ( ω ) { 幅 频 特 性 : ∣ H ( e j ω n ) ∣ 相 频 特 性 : ϕ ( ω ) H(e^{j\omega})=\sum_{n=-\infin}^{+\infin}h(n)e^{-j{\omega}n}=\Big|H(e^{j{\omega}n})\Big|e^{j\phi(\omega)}\\ \begin{cases} 幅频特性:\Big|H(e^{j{\omega}n})\Big|\\ 相频特性:\phi(\omega) \end{cases} H(ejω)=n=+h(n)ejωn=H(ejωn)ejϕ(ω){H(ejωn)ϕ(ω)
将序列 h ( n ) h(n) h(n)进行Z变换得到 H ( z ) H(z) H(z),这就是该系统的系统函数,即:
H ( z ) = Y ( z ) X ( z ) = ∑ i = 0 M b i z − i ∑ i = 0 N a i z − i H(z)=\frac{Y(z)}{X(z)}=\frac{\sum_{i=0}^{M}b_iz^{-i}}{\sum_{i=0}^{N}a_iz^{-i}} H(z)=X(z)Y(z)=i=0Naizii=0Mbizi
如果Z变换的收敛域包含单位圆,则:
H ( e j ω ) = H ( z ) ∣ z = e j ω H(e^{j\omega})=H(z)\Big|_{z=e^{j\omega}} H(ejω)=H(z)z=ejω

输入序列 e j ω n e^{j{\omega}n} ejωn的频率响应

y ( n ) = h ( n ) ∗ x ( n ) = . . . = H ( e j ω ) e j ω n = ∣ H ( e j ω n ) ∣ e j [ ω n + ϕ ( ω ) ] y(n)=h(n)^{*}x(n)=...=H(e^{j\omega})e^{j{\omega}n}\\ =\Big|H(e^{j{\omega}n})\Big|e^{j\big[{\omega}n+\phi(\omega)\big]}\\ y(n)=h(n)x(n)=...=H(ejω)ejωn=H(ejωn)ej[ωn+ϕ(ω)]

上式说明:单频复指数序列 e j ω n e^{j{\omega}n} ejωn通过频率响应函数为 H ( e j ω ) H(e^{j\omega}) H(ejω)的系统后,输出还是单频复指数序列,只不过幅度放大 ∣ H ( e j ω n ) ∣ \Big|H(e^{j{\omega}n})\Big| H(ejωn)倍,相移为 ϕ ( ω ) \phi(\omega) ϕ(ω)

利用系统的零极点分布分析系统的频率响应特性

H ( z ) = A ∏ r = 1 M ( 1 − c r z − 1 ) ∏ r = 1 N ( 1 − d r z − 1 ) ∣ H ( e j ω ) ∣ = ∣ A ∣ ∏ r = 1 M ∣ z r ∣ ∏ r = 1 N ∣ P r ∣ ϕ ( ω ) = ω ( N − M ) + ∑ r = 1 N α r − ∑ r = 1 M β r H(z)=A\frac{\prod_{r=1}^M(1-c_rz^{-1})}{\prod_{r=1}^{N}(1-d_rz^{-1})} \\ |H(e^{j\omega})|=|A|\frac{\prod_{r=1}^M|z_r|}{\prod_{r=1}^N{|P_r|}} \\ \phi(\omega)=\omega(N-M)+\sum_{r=1}^{N}\alpha_r-\sum_{r=1}^{M}\beta_r H(z)=Ar=1N(1drz1)r=1M(1crz1)H(ejω)=Ar=1NPrr=1Mzrϕ(ω)=ω(NM)+r=1Nαrr=1Mβr

即:

  • 幅频响应等于所有的零点到 ω \omega ω的模长的乘积除以所有的极点到 ω \omega ω的模长的乘积;
  • 相频响应等于所有的零点与 ω \omega ω形成的夹角之和减去所有的极点与 ω \omega ω形成的夹角之和。

几种特殊系统的系统函数及特点

全通滤波器

∣ H ( e j ω ) ∣ = 1 0 ≤ ω ≤ 2 π |H(e^{j\omega})|=1{\quad}0{\le}\omega{\le}2\pi H(ejω)=10ω2π

梳妆滤波器

H ( z N ) = 1 − z − N 1 − a z − N 0 < a < 1 H(z^{N})=\frac{1-z^{-N}}{1-az^{-N}}{\qquad}0<a<1 H(zN)=1azN1zN0<a<1

梳妆滤波器可以滤除输入信号中 ω = 2 π N k ,   k = 0 , 1 , . . . , N − 1 \omega=\frac{2\pi}{N}k,\ k=0,1,...,N-1 ω=N2πk, k=0,1,...,N1的频率分量,可以滤除电网谐波干扰和其它频谱等间隔分布的干扰。当 a = 1 a=1 a=1时就变成了全通滤波器,下面给出频率响应和零极点分布的 M A T L A B MATLAB MATLAB代码:

% y(n) -0.9y(n-8) = x(n) - x(n-8);
% H(z) = (1 - z^-8) / (1 - 0.9z^-8)
B = [1 0 0 0 0 0 0 0 -1];
A = [1 0 0 0 0 0 0 0 -0.9];
% impz(B, A, 200);
% [Z, P, K] = tf2zp(B, A)
zplane(B, A);
legend('零点', '极点');
title('$$ H(z) = \frac{1-z^{-8}}{1-0.9z^{-8}}$$', ...
    'Interpreter', 'latex');

[H, w] = freqz(B, A, 500, 'whole');
Hm = abs(H);
Hp = angle(H);
subplot(2, 1, 1);
plot(w, Hm), grid on;
xlabel('\omega(rad/s)');
ylabel('Magnitude');
title('幅频特性曲线');
subplot(2, 1, 2);
plot(w, Hp), grid on;
xlabel('\omega(rad/s)');
ylabel('Phase');
title('相频特性曲线');

a = 0.2 a=0.2 a=0.2时的频率响应和零极点分布图:

在这里插入图片描述
在这里插入图片描述

a = 0.9 a=0.9 a=0.9时的频率响应和零极点分布图:

在这里插入图片描述
在这里插入图片描述

离散傅里叶变换(DFT)

对离散时间序列 x ( n ) x(n) x(n)进行FT得到的结果在频域仍然是连续的,不便于计算机处理。因此目的是对频域也进行离散化,方法有多种,如DFT、DFS。对于DFS,主要步骤就是对 x ( n ) x(n) x(n)进行周期性延拓,然后计算其傅里叶级数,该结果和DFT的结果是有关联的。

DFT的定义

X ( k ) = D F T [ x ( n ) ] = ∑ n = 0 N − 1 x ( n ) W N k n k = 0 , 1 , . . . , N − 1 x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( K ) W N − k n n = 0 , 1 , . . . , N − 1 W N = e − j 2 π N X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)W_N^{kn}{\quad}k=0,1,...,N-1\\ x(n)=IDFT[X(k)]=\frac{1}{N}\sum_{k=0}^{N-1}X(K)W_N^{-kn}{\quad}n=0,1,...,N-1\\ W_N=e^{-j\frac{2\pi}{N}}\\ X(k)=DFT[x(n)]=n=0N1x(n)WNknk=0,1,...,N1x(n)=IDFT[X(k)]=N1k=0N1X(K)WNknn=0,1,...,N1WN=ejN2π

W N = e − j 2 π N W_N=e^{-j\frac{2\pi}{N}} WN=ejN2π(旋转因子)带入即得:
X ( k ) = D F T [ x ( n ) ] = ∑ n = 0 N − 1 x ( n ) e − j 2 π N k n k = 0 , 1 , . . . , N − 1 x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N k n n = 0 , 1 , . . . , N − 1 X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}{N}kn}{\quad}k=0,1,...,N-1\\ x(n)=IDFT[X(k)]=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi}{N}kn}{\quad}n=0,1,...,N-1 X(k)=DFT[x(n)]=n=0N1x(n)ejN2πknk=0,1,...,N1x(n)=IDFT[X(k)]=N1k=0N1X(k)ejN2πknn=0,1,...,N1

和DFS的比较

D F S : { X ( k ) ~ = D F S [ x ( n ) ~ ] = ∑ n = 0 N − 1 x ( n ) ~ e − j 2 π N k n ( 1 ) x ( n ) ~ = I D F S [ X ( k ) ~ ] = 1 N ∑ k = 0 N − 1 X ( k ) ~ e j 2 π N k n ( 2 ) D F T : { X ( k ) = D F T [ x ( n ) ] = ∑ n = 0 N − 1 x ( n ) e − j 2 π N k n k = 0 , 1 , . . . , N − 1 ( 3 ) x ( n ) = I D F T [ X ( k ) ] = 1 N ∑ k = 0 N − 1 X ( k ) e j 2 π N k n n = 0 , 1 , . . . , N − 1 ( 4 ) DFS: \begin{cases} \widetilde{X(k)}=DFS[\widetilde{x(n)}]=\sum_{n=0}^{N-1}\widetilde{x(n)}e^{-j{\frac{2\pi}{N}}kn}{\qquad}(1)\\ \\ \widetilde{x(n)}=IDFS[\widetilde{X(k)}]=\frac{1}{N}\sum_{k=0}^{N-1}\widetilde{X(k)}e^{j{\frac{2\pi}{N}}kn}{\qquad}(2)\\ \end{cases} \\ DFT: \begin{cases} X(k)=DFT[x(n)]=\sum_{n=0}^{N-1}x(n)e^{-j\frac{2\pi}{N}kn}{\quad}k=0,1,...,N-1{\quad}(3)\\ \\ x(n)=IDFT[X(k)]=\frac{1}{N}\sum_{k=0}^{N-1}X(k)e^{j\frac{2\pi}{N}kn}{\quad}n=0,1,...,N-1{\quad}(4)\\ \end{cases} DFS:X(k) =DFS[x(n) ]=n=0N1x(n) ejN2πkn(1)x(n) =IDFS[X(k) ]=N1k=0N1X(k) ejN2πkn(2)DFT:X(k)=DFT[x(n)]=n=0N1x(n)ejN2πknk=0,1,...,N1(3)x(n)=IDFT[X(k)]=N1k=0N1X(k)ejN2πknn=0,1,...,N1(4)

其实没有什么不同,只是对序列的取值有限定,这样的限定有如下结论:

  • 如果 s ( n ) s(n) s(n)是周期序列,周期为 N N N,那么其一个周期 s 1 N ( n ) s_{1N}(n) s1N(n) N N N D F T DFT DFT就等于其 D F S DFS DFS的主值序列。即:
    S ( k ) = D F T [ s 1 N ( n ) ] = S ( k ) ~ R N ( n ) = D F S [ s ( n ) ~ ] R N ( n ) {\color{blue}S(k)}=DFT[s_{1N}(n)]={\color{blue}\widetilde{S(k)}R_N(n)}=DFS[\widetilde{s(n)}]R_N(n) S(k)=DFT[s1N(n)]=S(k) RN(n)=DFS[s(n) ]RN(n)

  • 如果 s ( n ) s(n) s(n)是非周期序列,那么对其进行周期性延拓得到 s ( n ) ~ \widetilde{s(n)} s(n) 的DFS的主值序列就等于其DFT的结果。即:
    S ( k ) ~ R N ( n ) = D F S [ s ( n ) ~ ] R N ( n ) = S ( k ) = D F T [ s ( n ) ] {\color{blue}\widetilde{S(k)}R_N(n)}=DFS[\widetilde{s(n)}]R_N(n)={\color{blue}S(k)}=DFT[s(n)] S(k) RN(n)=DFS[s(n) ]RN(n)=S(k)=DFT[s(n)]

DFT与FT/ZT的关系

设序列 x ( n ) x(n) x(n)的长度为M。

N点DFT
ZT
FT
单位圆上N点等间隔采样
0到2pi区间N点等间隔采样
xn
Xk
Xz
Xw

X ( z ) = Z T [ x ( n ) ] = ∑ n = 0 M − 1 x ( n ) z − n ( 1 ) X ( e j ω ) = D T F T [ x ( n ) ] = ∑ n = 0 M − 1 x ( n ) e − j ω n ( 2 ) X ( k ) = D F T [ x ( n ) ] N = ∑ n = 0 M − 1 x ( n ) W N k n = ∑ n = 0 M − 1 x ( n ) e − j 2 π N n k k = 0 , 1 , . . . , N − 1 ( 3 ) X(z)=ZT[x(n)]=\sum_{n=0}^{M-1}x(n)z^{-n}{\quad}(1)\\ X(e^{j\omega})=DTFT[x(n)]=\sum_{n=0}^{M-1}x(n)e^{-j{\omega}n}{\quad}(2)\\ X(k)=DFT[x(n)]_N=\sum_{n=0}^{M-1}x(n)W_N^{kn}\\ =\sum_{n=0}^{M-1}x(n)e^{-j\frac{2\pi}{N}nk}{\quad}k=0,1,...,N-1{\quad}(3) X(z)=ZT[x(n)]=n=0M1x(n)zn(1)X(ejω)=DTFT[x(n)]=n=0M1x(n)ejωn(2)X(k)=DFT[x(n)]N=n=0M1x(n)WNkn=n=0M1x(n)ejN2πnkk=0,1,...,N1(3)

  • 序列 x ( n ) x(n) x(n)的N点DFT- X ( k ) X(k) X(k) x ( n ) x(n) x(n)的Z变换在单位圆上的N点等间隔采样;
    X ( k ) = X ( z ) ∣ z = e j 2 π N k k = 0 , 1 , . . . , N − 1 X(k)=X(z)\big|_{\color{blue}z=e^{j\frac{2\pi}{N}k}}{\quad}k=0,1,...,N-1 X(k)=X(z)z=ejN2πkk=0,1,...,N1

  • X ( k ) X(k) X(k) x ( n ) x(n) x(n)的傅里叶变换 X ( e j ω ) X(e^{j\omega}) X(ejω)在区间 [ 0 ,   2 π ] [0,\ 2\pi] [0, 2π]上的N点等间隔采样;
    X ( k ) = X ( e j ω ) ∣ w = 2 π N k k = 0 , 1 , . . . , N − 1 X(k)=X(e^{j\omega})\big|_{\color{blue}w=\frac{2\pi}{N}k}{\quad}k=0,1,...,N-1 X(k)=X(ejω)w=N2πkk=0,1,...,N1

DFT的隐含周期性

∵ W N k = W N k + m N k , m 为 整 数 , N 为 自 然 数 ∴ X ( k + m N ) = . . . = X ( k ) {\because}{\quad}W_N^k=W_N^{k+mN}{\qquad}k,m为整数,N为自然数\\ {\therefore}{\quad}X(k+mN)=...=X(k) WNk=WNk+mNk,mNX(k+mN)=...=X(k)

任何周期为N的周期序列 x ( n ) ~ \widetilde{x(n)} x(n) 都可以看做长度为N的有限长序列 x ( n ) x(n) x(n)的周期性延拓序列,而 x ( n ) x(n) x(n) x ( n ) ~ \widetilde{x(n)} x(n) 的一个周期,即:
x ( n ) ~ = ∑ m = − ∞ + ∞ x ( n + m N ) x ( n ) = x ( n ) ~ R N ( n ) \widetilde{x(n)}=\sum_{m=-\infin}^{+\infin}x(n+mN)\\ x(n)=\widetilde{x(n)}R_N(n) x(n) =m=+x(n+mN)x(n)=x(n) RN(n)
有限长序列 x ( n ) x(n) x(n)的N点DFT的结果 X ( k ) X(k) X(k)恰好是 x ( n ) x(n) x(n)的周期性延拓序列 x ( ( n ) ) N x((n))_N x((n))N的DFS的结果 X ( k ) ~ \widetilde{X(k)} X(k) 的主值序列,即:
X ( k ) = X ( k ) ~ R N ( k ) X(k)=\widetilde{X(k)}R_N(k) X(k)=X(k) RN(k)
因此 X ( k ) X(k) X(k)实质上就是 x ( n ) x(n) x(n)的周期延拓序列 x ( ( n ) ) N x((n))_N x((n))N的频谱特性。

DFT的性质

线性

时/频域循环移位定理

时 域 循 环 移 位 定 理 { y ( n ) = x ( ( n + m ) ) N R N ( n ) Y ( k ) = D F T [ y ( n ) ] = W N − k m X ( k ) 频 域 循 环 移 位 定 理 { Y ( k ) = X ( ( k + l ) ) N R N ( k ) y ( n ) = I D F T [ Y ( K ) ] N = W N n l x ( n ) 时域循环移位定理 \begin{cases} & y(n)=x((n+m))_NR_N(n)\\ & Y(k)=DFT[y(n)]=W_N^{-km}X(k)\\ \end{cases} \\ 频域循环移位定理 \begin{cases} & Y(k)=X((k+l))_NR_N(k)\\ & y(n)=IDFT[Y(K)]_N=W_N^{nl}x(n) \end{cases} {y(n)=x((n+m))NRN(n)Y(k)=DFT[y(n)]=WNkmX(k){Y(k)=X((k+l))NRN(k)y(n)=IDFT[Y(K)]N=WNnlx(n)

循环卷积定理

i f x ( n ) = x 2 ( n ) ∗ L x 1 ( n ) = [ ∑ m = 0 N − 1 x 2 ( m ) x 1 ( ( n − m ) ) N ] R N ( n ) h a v e X ( k ) = D F T [ x ( n ) ] N = X 1 ( k ) X 2 ( k ) X 1 ( k ) = D F T [ x 1 ( n ) ] X 2 ( k ) = D F T [ x 2 ( n ) ] if{\quad}x(n)=x_2(n){\color{blue}*_L}x_1(n)\\ =[\sum_{m=0}^{N-1}x_2(m)x_1((n-m))_N]R_N(n)\\ have{\quad}X(k)=DFT[x(n)]_N=X_1(k)X_2(k)\\ X_1(k)=DFT[x_1(n)]\\ X_2(k)=DFT[x_2(n)]\\ ifx(n)=x2(n)Lx1(n)=[m=0N1x2(m)x1((nm))N]RN(n)haveX(k)=DFT[x(n)]N=X1(k)X2(k)X1(k)=DFT[x1(n)]X2(k)=DFT[x2(n)]

复共轭序列的DFT及其对称性

{ x ( n ) = x e p ( n ) + x o p ( n ) X ( k ) = X R ( k ) + j X I ( k ) { X R ( k ) = D F T [ x e p ( n ) ] j X I ( k ) = D F T [ x o p ( n ) ] \begin{cases} &x(n)=x_{ep}(n)+x_{op}(n)\\ &X(k)=X_R(k)+jX_I(k)\\ \end{cases} \\ \begin{cases} &X_R(k)=DFT[x_{ep}(n)]\\ &jX_I(k)=DFT[x_{op}(n)]\\ \end{cases} {x(n)=xep(n)+xop(n)X(k)=XR(k)+jXI(k){XR(k)=DFT[xep(n)]jXI(k)=DFT[xop(n)]

线性卷积和循环卷积的关系

y c ( n ) = [ ∑ i = − ∞ ∞ y l ( n + i L ) ] R L ( n ) y_c(n)=\Big[\sum_{i=-\infin}^{\infin}y_l(n+iL)\Big]R_L(n) yc(n)=[i=yl(n+iL)]RL(n)

循环卷积等于线性卷积以L为周期进行周期延拓后的序列的主值序列,若要求循环卷积和线性卷积相等,则需要周期延拓后无混叠,即 L ≥ N + M − 1 L{\ge}N+M-1 LN+M1

频率域采样

X ( k ) X(k) X(k)恢复出 x ( n ) x(n) x(n)的条件

FT
0-2piN点
等间隔采样
IDFT
周期延拓
DFS
主值序列
ZT
单位圆上N点
等间隔采样
x(n)
X(e^jw)
X(k)
X(n)N
x~n
X~k
X(z)

如何从x(n)N推导出x(n)呢?下面直接给出结论:
x N ( n ) = x ( n ) ~ R N ( n ) = [ ∑ i = − ∞ ∞ x ( n + i N ) ] R N ( n ) x_N(n)=\widetilde{x(n)}R_N(n)\\ =\Big[\sum_{i=-\infin}^{\infin}x(n+iN)\Big]R_N(n) xN(n)=x(n) RN(n)=[i=x(n+iN)]RN(n)
如果序列 x ( n ) x(n) x(n)的长度为M,则只有当频域采样点数 N ≥ M N{\ge}M NM时,才有:
x N ( n ) = I D F T [ X ( k ) ] = x ( n ) x_N(n)=IDFT\Big[X(k)\Big]=x(n) xN(n)=IDFT[X(k)]=x(n)
即可由频域采样值 X ( k ) X(k) X(k)恢复出原序列 x ( n ) x(n) x(n),否则产生时域混叠现象。

如何由 X ( k ) X(k) X(k)恢复 X ( z ) X(z) X(z) X ( e j ω ) X(e^{j\omega}) X(ejω)

结论如下,省略推导:
X ( z ) = ∑ k = 0 N − 1 X ( k ) 1 N 1 − z − N 1 − W N − k z − 1 = ∑ k = 0 N − 1 X ( k ) ϕ k ( z ) X(z)=\sum_{k=0}^{N-1}X(k)\frac{1}{N}\frac{1-z^{-N}}{1-W_N^{-k}z^{-1}}\\ =\sum_{k=0}^{N-1}X(k){\phi}_k(z)\\ X(z)=k=0N1X(k)N11WNkz11zN=k=0N1X(k)ϕk(z)
z = e j ω z=e^{j\omega} z=ejω带入上式得:
X ( e j ω ) = ∑ k = 0 N − 1 X ( k ) ϕ ( ω − 2 π N k ) ϕ ( ω ) = 1 N s i n ( ω N / 2 ) sin ⁡ ( ω / 2 ) e − j ω ( N − 1 2 ) X(e^{j\omega})=\sum_{k=0}^{N-1}X(k){\phi}({\omega}-\frac{2\pi}{N}k)\\ {\phi}(\omega)=\frac{1}{N}\frac{sin({\omega}N/2)}{\sin({\omega}/2)}e^{-j{\omega}(\frac{N-1}{2})} X(ejω)=k=0N1X(k)ϕ(ωN2πk)ϕ(ω)=N1sin(ω/2)sin(ωN/2)ejω(2N1)
上式中 X ( z ) X(z) X(z)表示内插公式 ϕ k ( z ) \phi_k(z) ϕk(z)称为内插函数

用DFT对信号进行频谱分析

对连续信号进行频谱分析

X a ( k F ) = T X ( k ) = T ⋅ D F T [ x ( n ) N ] k = 0 , 1 , . . . , N − 1 X_a(kF)=TX(k)=T{\cdot}DFT[x(n)_N]{\quad}k=0,1,...,N-1 Xa(kF)=TX(k)=TDFT[x(n)N]k=0,1,...,N1

上式表明,可以通过对连续信号采样并进行 D F T DFT DFT再乘 T T T,近似得到模拟信号频谱的周期延拓函数在第一个周期 [ 0 , F s ] \Big[0,F_s\Big] [0,Fs]上的N点等间隔采样 X a ( k F ) X_a(kF) Xa(kF)
T p T_p Tp和N可以按照下面两式进行选择:
{ N > 2 f c F T p > 1 F \begin{cases} N > \frac{2f_c}{F}\\ T_p > \frac{1}{F} \end{cases} {N>F2fcTp>F1
f c f_c fc是信号最高频率, F F F是谱分辨率, T p T_p Tp是信号持续时间。

对序列进行频谱分析

误差分析

混叠现象

采样速率必须满足采样定理,否则会在 ω = π \omega=\pi ω=π(对应模拟频率 f = F s / 2 f=F_s/2 f=Fs/2)附近发生频谱混叠现象。一般在采样前进行预滤波,滤除高于折叠频率 F s / 2 F_s/2 Fs/2的频率成分,以免发生频谱混叠现象。

栅栏效应

N点DFT是在频率区间 [ 0 , 2 π ] [0,2\pi] [0,2π]上对时域离散信号的频谱进行N点等间隔采样,而采样点之间的频谱是看不到的。对有限长序列,可以在原序列尾部补零;对无限长序列,可以增大截取长度DFT变换区间长度,从而使频域采样间隔变小,增加频域采样点数和采样点位置,使原来漏掉的某些频谱成分被检测出来。

截断效应

实际中遇到的 x ( n ) x(n) x(n)可能是无限长的,用DFT对其进行频谱分析时,必须将其截短,形成有限长序列 y ( n ) = x ( n ) w ( n ) y(n)=x(n)w(n) y(n)=x(n)w(n) w ( n ) w(n) w(n)称为窗函数,长度为N。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值