一、先判断电脑是否有独立显卡GPU
1.判断方法1
打开任务管理器——性能
左上角型号有些NVIDIA则说明有显卡
可以根据该型号到NVIDIA官网查看是否支持CUDA,一般是支持的
2.判断方法2
打开windows菜单栏的,查找设备管理器
在显示适配器中查看是否有独显
二、安装显卡驱动最新版本【没有GPU的直接跳到步骤三】
一般安装pytorch失败很大一部分原因是版本不匹配,可以选择安装最新驱动,避免后续的失败
在官网上下载最新版本驱动
根据自己GPU的型号,选择相应的驱动程序。其中带有Notebooks字样的为笔记本。
搜索——下载
下载完后,直接默认安装即可。耐心等待。。。
然后打开cmd,输入nvidia-smi来确定cuda driver 的版本
cmd打开方法:win+R,然后输入cmd即可。
如果打不开,则输入cd 加上nvidia的路径(根据自己电脑修改路径) ,然后再输入nvidia-smi
三、 下载CUDA
打开pytorch官网
下载相应的CUDA版本【没有GPU的,选择CPU版本】
要保证CUDA runtime version 要低于 CUDA driver version
复制官网下面那条语句,到cmd中下载
下载配置步骤如下:
1.激活对应的虚拟环境(你安装pytorch的虚拟环境)
查看已有环境:conda env list
创建虚拟环境:conda create -n pytorch python=3.6
conda activate 虚拟环境名
#激活环境
括号代表你所处的虚拟环境
2.输入conda list,看看有没有pytorch或者torch
3.将官网复制的下载语句,粘贴到cmd中,进行下载
之前下载了,因此显示下载完成。没有的话,则选择y,进行下载(需要下载很久,可以选择清华镜像通道等进行下载。总之,耐心等待,总能下载好)
下载完后,conda list查看是否有下载torch相应的包
4.下载成功后,输入python
5.输入import torch
6.输入torch.cuda.is_available()
如果显示True则下载成功
如果有GPU,则显示True,如果没有GPU,则显示False,说明PyTorch安装成功!
如果有GPU但是显示False,则失败。