corr()函数的用法

本文介绍了corr()函数的三种使用方式:pearson适用于线性数据的相关性分析;spearman适用于非线性、非正态分布的数据;kendall则适用于无序序列的相关性分析。默认情况下,corr()函数采用pearson作为相关系数计算方法。
摘要由CSDN通过智能技术生成

corr()函数的用法

corr可选的方式有三种:在这里插入图片描述
在这里插入图片描述

1)pearson:相关系数来衡量两个数据集合是否在一条线上面,即针对线性数据的相关系数计算,针对非线性数据便会有误差。
在这里插入图片描述

2)spearman:非线性的,非正太分析的数据的相关系数
在这里插入图片描述

3)kendall:用于反映分类变量相关性的指标,即针对无序序列的相关系数,非正太分布的数据
在这里插入图片描述
其中corr()函数的参数为空时,默认使用的参数为pearson
在这里插入图片描述

上面的结果验证了,pearson对线性的预测较好,对于幂函数,预测差强人意。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值