【解决问题】RuntimeError: The size of tensor a (80) must match the size of tensor b (56) at non-singleton

本文介绍了在使用PyTorch时遇到的Tensor尺寸不匹配错误,提供了解决该问题的具体步骤。对于错误1,通过在代码中引入SPPF类并从YOLOv5.5的model/common.py复制到当前项目的model/common.py来解决。对于错误2,由于模型文件下载错误导致的问题,建议从GitHub官方地址下载正确的yolov5s.pt模型文件并放置于正确位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、错误1

Can't get attribute 'SPPF' on <module 'models.common' from 'D:\\Pycharm\\Code\\yolov5-5.0\\models\\common.py'>

解决方案1

你可以去github上,这儿我用的是YOLOv5.5的版本,就去Tags6里面的model/common.py里面去找到这个SPPF的类,把它拷过来到你这个Tags5的model/common.py里面,这样你的代码就也有这个类了,还要引入一个warnings包就行了

带你在这里插入图片描述
点开common.py文件

import warnings
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

将这个复制到对应的类就行了。

二、 错误2

刚解决了上一个问题,结果又出现了问题,我也很崩溃,差了半天,也没有找到解决办法,最终,我找到了,哈哈,让我笑一会!!!下面看错误:

RuntimeError: The size of tensor a (80) must match the size of tensor b (56) at non-singleton

解决方案2:

在这里插入图片描述
注意看这两个是否对应:
在这里插入图片描述
因为我运行代码的是后模型没有下载下来,所以自己去github上下载的模型,然后出错了,就是模型错了,这儿给出地址:
https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt
下载到在这里插入图片描述
如图同级目录下就行了,然后就可以运行了!

<think>好的,我现在遇到了一个PyTorchRuntimeError,错误信息是“RuntimeError: The size of tensor a (40) must match the size of tensor b (41) at non-singleton dimension 3”。需要解决这个问题。首先,我需要理解这个错误的含义。 根据错误提示,两个张量a和b在第3个维度的大小不匹配,一个是40,另一个是41,而第3个维度不是单一维度(即维度大小不为1)。这意味着在这个维度上,两个张量无法进行某种操作,比如矩阵乘法或者拼接等。 接下来,我需要回想可能引起这类错误的原因。根据之前的经验,维度不匹配通常发生在张量操作时,比如矩阵乘法(torch.mm、torch.matmul)、逐元素运算(如加法、乘法)、或者拼接(torch.cat)等。此外,神经网络中的层间维度不匹配也可能导致这个问题,比如卷积层的输出通道数与下一层的输入通道数不一致。 现在,我需要检查代码中涉及这两个张量的操作。首先,确定错误发生的位置。通常,错误信息会指出哪一行代码导致的问题,比如在模型的前向传播过程中,或者在计算损失函数时。找到具体的代码行是关键。 假设错误出现在模型的前向传播中,我需要检查各层的维度变化。例如,卷积层后的输出形状是否与下一层的输入形状匹配。如果卷积核大小、步长或填充设置不当,可能导致输出尺寸计算错误。例如,卷积后的尺寸计算公式为:$$ \text{输出尺寸} = \left\lfloor \frac{\text{输入尺寸} + 2 \times \text{填充} - \text{卷积核大小}}{\text{步长}} \right\rfloor + 1 $$如果这里的计算与实际输出不符,就会导致后续层的维度不匹配。 另外,还需要考虑张量操作中的广播机制。PyTorch在进行逐元素操作时会自动扩展维度,但要求各维度要么相同,要么其中一个是1。如果两个张量在某个维度上的大小既不相同也不是1,就会报错。例如,张量A的形状是[2,3,40],张量B的形状是[2,3,41],如果试图相加,就会在第3个维度上出错。 再者,检查是否有误用的函数。例如,使用torch.cat时,如果在某个维度上拼接,其他维度必须一致。例如,如果在维度2上拼接两个形状为[10,20,30]和[10,20,25]的张量,结果会是[10,20,55],但如果其中一个张量的其他维度不一致,比如[10,19,30],就会报错。 现在,参考用户提供的引用内容,特别是引用[5]提到的解决方案,涉及修改平均池化层和全连接层的参数。例如,调整池化层的kernel_size、stride或padding,或者修改全连接层的输入特征数,使其匹配前一层的输出。这可能适用于某些模型结构,比如在ResNet等CNN中,最后的全连接层输入特征数需要根据前面的卷积层输出调整。 另外,用户提到的错误案例中,如引用[4]的矩阵乘法维度不匹配,矩阵乘法要求第一个矩阵的列数等于第二个矩阵的行数。如果两个矩阵维度不满足,就会报错。比如,矩阵A是[2×3],矩阵B是[2×3],无法相乘,因为A的列数3不等于B的行数2。 回到当前的问题,假设错误发生在模型的某一层,比如卷积层之后的全连接层。假设卷积层输出的特征图尺寸是[批量大小, 通道数, 高度, 宽度],而全连接层需要将特征图展平为[批量大小, 通道数×高度×宽度]。如果高度或宽度计算错误,展平后的特征数就会与全连接层的输入特征数不匹配,导致错误。例如,原计划展平后的特征数是40×40×通道数,但实际计算得到的是41×40×通道数,这时全连接层的输入维度设置不正确,就会报错。 解决方案方面,首先需要精确计算每一层的输出尺寸。可以使用PyTorch的torch.nn.Conv2d层的输出形状公式,或者手动计算,确保各层的参数正确。例如,调整卷积层的参数,使得输出尺寸符合预期。或者,在进入全连接层之前,使用自适应池化层(如nn.AdaptiveAvgPool2d)来固定输出尺寸,避免因输入图片尺寸变化导致的维度问题。 此外,检查数据预处理环节,确保输入图像的尺寸一致。如果输入图像的尺寸不同,可能导致卷积层输出的特征图尺寸不一致,从而引发后续层的维度错误。这种情况下,可以统一输入尺寸,或者在模型中使用自适应池化层来统一特征图尺寸。 另一个可能的解决方案是调整模型结构中的通道数。例如,在某个卷积层中,输出通道数设置错误,导致下一层的输入通道数不匹配。需要检查各层的输入输出通道数是否衔接正确。 总结解决步骤: 1. 定位错误发生的代码行,确定涉及的两个张量。 2. 检查这两个张量的形状,找到不匹配的维度和具体数值。 3. 回溯张量的来源,查看是哪一层的输出导致的问题。 4. 调整相关层的参数(如卷积核大小、步长、填充)以修正输出尺寸。 5. 或者修改后续层的输入维度设置,使其匹配前一层的输出。 6. 使用自适应池化层或调整全连接层的输入特征数。 7. 确保输入数据尺寸一致,避免动态尺寸导致的维度变化。 例如,如果错误出现在第3个维度(假设是宽度),检查导致该维度变化的层,比如卷积层或池化层,调整其参数。例如,若当前卷积层的输出宽度为40,而下一层需要41,可能需要调整填充或步长,使得输出宽度一致。或者,修改后续层的结构,使其接受40的宽度。 在用户提供的引用[5]中,解决方法是修改平均池化层和全连接层的参数。例如,修改池化层的kernel_size和stride为1,可能将特征图尺寸固定,然后调整全连接层的输入特征数。这适用于某些情况,比如当特征图的尺寸因输入尺寸变化而不同时,通过自适应池化统一尺寸。 此外,还可以使用torchsummary库来打印模型的各层输出形状,帮助快速定位问题层。例如: ```python from torchsummary import summary model = MyModel() summary(model, input_size=(3, 224, 224)) ``` 这会显示每一层的输出尺寸,方便检查哪一层的输出与预期不符。 最后,确保在修改后重新运行代码,验证是否解决了维度不匹配的问题。如果仍有问题,继续排查其他可能的维度不一致处。</think>要解决两个张量维度不匹配导致的 `RuntimeError`,需通过以下步骤定位和调整维度问题: --- ### **1. 定位错误发生的位置** - **查看错误堆栈**:确定报错发生在模型前向传播、损失计算还是其他操作环节。 - **示例场景**:假设错误出现在卷积层与全连接层之间,如: ```python x = self.conv_layers(x) # 输出形状 [batch, 512, 40, 40] x = x.view(x.size(0), -1) # 展平为 [batch, 512*40*40] x = self.fc(x) # 全
评论 118
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值