【解决问题】RuntimeError: The size of tensor a (80) must match the size of tensor b (56) at non-singleton

本文介绍了在使用PyTorch时遇到的Tensor尺寸不匹配错误,提供了解决该问题的具体步骤。对于错误1,通过在代码中引入SPPF类并从YOLOv5.5的model/common.py复制到当前项目的model/common.py来解决。对于错误2,由于模型文件下载错误导致的问题,建议从GitHub官方地址下载正确的yolov5s.pt模型文件并放置于正确位置。
部署运行你感兴趣的模型镜像

一、错误1

Can't get attribute 'SPPF' on <module 'models.common' from 'D:\\Pycharm\\Code\\yolov5-5.0\\models\\common.py'>

解决方案1

你可以去github上,这儿我用的是YOLOv5.5的版本,就去Tags6里面的model/common.py里面去找到这个SPPF的类,把它拷过来到你这个Tags5的model/common.py里面,这样你的代码就也有这个类了,还要引入一个warnings包就行了

带你在这里插入图片描述
点开common.py文件

import warnings
class SPPF(nn.Module):
    # Spatial Pyramid Pooling - Fast (SPPF) layer for YOLOv5 by Glenn Jocher
    def __init__(self, c1, c2, k=5):  # equivalent to SPP(k=(5, 9, 13))
        super().__init__()
        c_ = c1 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_ * 4, c2, 1, 1)
        self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)

    def forward(self, x):
        x = self.cv1(x)
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')  # suppress torch 1.9.0 max_pool2d() warning
            y1 = self.m(x)
            y2 = self.m(y1)
            return self.cv2(torch.cat([x, y1, y2, self.m(y2)], 1))

将这个复制到对应的类就行了。

二、 错误2

刚解决了上一个问题,结果又出现了问题,我也很崩溃,差了半天,也没有找到解决办法,最终,我找到了,哈哈,让我笑一会!!!下面看错误:

RuntimeError: The size of tensor a (80) must match the size of tensor b (56) at non-singleton

解决方案2:

在这里插入图片描述
注意看这两个是否对应:
在这里插入图片描述
因为我运行代码的是后模型没有下载下来,所以自己去github上下载的模型,然后出错了,就是模型错了,这儿给出地址:
https://github.com/ultralytics/yolov5/releases/download/v5.0/yolov5s.pt
下载到在这里插入图片描述
如图同级目录下就行了,然后就可以运行了!

您可能感兴趣的与本文相关的镜像

PyTorch 2.9

PyTorch 2.9

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论 118
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值