深度学习基础(五):logistic Regression

逻辑回归是一种监督学习的分类算法,主要用于解决二分类问题。它通过sigmoid函数将线性回归的输出映射到(0,1)之间,以适应离散的类别标签。与线性回归对比,逻辑回归的输出在0到1之间,而线性回归可取任意实数值。损失函数使用的是交叉熵,通过梯度下降法求解最优参数。逻辑回归的局限性在于仅适用于线性可分的数据和二分类问题。
摘要由CSDN通过智能技术生成

属于什么算法?

Logistic Regression是监督学习中经典的分类方法,用于解决二分类问题

步骤

在这里插入图片描述
在这里插入图片描述

Step 1: Function Set

y ^ = σ ( w T x + b ) , σ ( z ) = 1 1 + e − z \hat y=\sigma(w^Tx+b),\sigma(z)=\frac{1}{1+e^{-z}} y^=σ(wTx+b)σ(z)=1+ez1 y ^ \hat y y^代表预测值

Step 2: Goodness of a Function

x 1 , x 2 x^1,x^2 x1,x2属于C1类别, x 3 x^3 x3属于C2类别
L ( w , b ) = f w , b ( x 1 ) f w , b ( x 2 ) ( 1 − f w , b ( x 3 ) ) . . . f w , b ( x n ) L(w,b)=f_{w,b}(x^1)f_{w,b}(x^2)(1-f_{w,b}(x^3))...f_{w,b}(x^n) L(w,b)=fw,b(x1)fw,b(x2)(1fw,b(x3))...fw,b(xn)设置为正确分类概率乘积
寻找最优参数 w ∗ , b ∗ w^*,b^* w,b满足 w ∗ , b ∗ = a r g m a x w , b L ( w , b ) w^*,b^*=arg \underset{w,b}{max}L(w,b) w,b=argw,bmaxL(w,b)
w ∗ , b ∗ = a r g m a x w , b L ( w , b ) = a r g m i n w , b − l n L ( w , b ) w^*,b^*=arg \underset{w,b}{max}L(w,b)=arg \underset{w,b}{min}-lnL(w,b) w,b=argw,bmaxL(w,b)=argw,bminlnL(w,b),只需要关注 − l n L ( w , b ) -lnL(w,b) lnL(w,b)即可
在这里插入图片描述

即衡量单个样本预测y值和实际y值接近的Loss Function为
L ( y ^ , y ) = − ( y l o g y ^ + ( 1 − y ) l o g ( 1 − y ^ ) ) L(\hat y,y)=-(ylog\hat y+(1-y)log(1-\hat y)) L(y^,y)=ylogy^+(1y)log(1y^) 此为交叉熵损失函数
if y=1: L ( y ^ , y ) = − l o g y ^ L(\hat y,y)=-log\hat y L(y^,y)=logy^,让 y ^ \hat y y^尽量大,接近于1
if y=0: L ( y ^ , y ) = − l o g ( 1 − y ^ ) L(\hat y,y)=-log(1-\hat y) L(y^,y)=log(1y^),让 l o g ( 1 − y ^ ) log(1-\hat y) log(1y^)尽量大,让 y ^ \hat y y^尽量小,接近于0
衡量整体的Cost Function为 J ( w , b ) = 1 m ∑ i = 1 m L ( y ^ i , y i ) J(w,b)=\frac{1}{m}\sum^m_{i=1}L(\hat y^i,y^i) J(w,b)=m1i=1mL(y^i,yi)

Step 3:Find Best Function

使用gradient descent
在这里插入图片描述
在这里插入图片描述

和Linear Regression对比

Output:Logistic Regression在0和1之间,Linear Regression任意值
损失函数不同

局限性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值