代码随想录算法训练营第七天| 454.四数相加II 、383. 赎金信 、 15. 三数之和 、 18. 四数之和 。

本文讨论了如何使用哈希法和unordered_map数据结构解决四数相加问题,通过统计两数组元素之和及其出现次数,降低了时间复杂度,同时指出哈希法会增加空间复杂度。文章还提到了双指针法在类似问题中的应用,如三数之和和四数之和,以及它们的时间复杂度对比。
摘要由CSDN通过智能技术生成

454.四数相加II

建议:本题是 使用map 巧妙解决的问题,好好体会一下 哈希法 如何提高程序执行效率,降低时间复杂度,当然使用哈希法 会提高空间复杂度,但一般来说我们都是舍空间 换时间, 工业开发也是这样。

本题解题步骤:

首先定义 一个unordered_map,key放a和b两数之和,value 放a和b两数之和出现的次数。
遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中。
定义int变量count,用来统计 a+b+c+d = 0 出现的次数。
在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就用count把map中key对应的value也就是出现次数统计出来。
最后返回统计值 count 就可以了

class Solution {
    public int fourSumCount(int[] nums1, int[] nums2, int[] nums3, int[] nums4) {
         Map<Integer, Integer> map = new HashMap<>();
         int result=0;
         for (int i:nums1){
            for(int j:nums2){
                int sum=i+j;
                //hashmap.getOrDefault(Object key, V defaultValue)获取指定 key 对应对 value,如果找不到 key ,则返回设置的默认值
                map.put(sum,map.getOrDefault(sum,0)+1);
            }
         }
        for (int a:nums3){
            for(int b:nums4){
                result+=map.getOrDefault(0-a-b,0);
            }
        }
        return result;
         }
}

383. 赎金信

建议:本题 和 242.有效的字母异位词 是一个思路 ,算是拓展题

题目链接/文章讲解:https://programmercarl.com/0383.%E8%B5%8E%E9%87%91%E4%BF%A1.html

15. 三数之和

建议:本题虽然和 两数之和 很像,也能用哈希法,但用哈希法会很麻烦,双指针法才是正解,可以先看视频理解一下 双指针法的思路,文章中讲解的,没问题 哈希法很麻烦。
三数之和的时间复杂度是O(n^2)

class Solution {
    public List<List<Integer>> threeSum(int[] nums) {
        List<List<Integer>> result=new ArrayList<>();
        // int [] nums2={};
        Arrays.sort(nums);//从小到大排序
        for(int i=0;i<nums.length;i++){
            if(nums[i]>0){//因为已经排序了,如果连i都大于0,后面那两个肯定大于0,三元组肯定大于0
                return result;
            }
            if(i>0&&nums[i]==nums[i-1]){//去重答案中第一位元素
                continue;
            }
            int left=i+1;
            int right=nums.length-1;//left,right分别是答案中第二、三位元素
            while(left<right){
                int sum=nums[i]+nums[left]+nums[right];
                if(sum>0){
                    right--;
                }else if(sum<0){
                    left++;
                }else{
                    result.add(Arrays.asList(nums[i],nums[left],nums[right]));
                    while(right>left&&nums[left]==nums[left+1]){left++;}//第二个元素去重
                    while(right>left&&nums[right]==nums[right-1]){right--;}//第三个元素去重
                    right--;
                    left++;
                }
            }
        }
        return result;
    }
}

18. 四数之和

建议: 要比较一下,本题和 454.四数相加II 的区别,为什么 454.四数相加II 会简单很多,这个想明白了,对本题理解就深刻了。 本题 思路整体和 三数之和一样的,都是双指针,但写的时候 有很多小细节,需要注意,建议先看视频。
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况,三数之和的时间复杂度是O(n2),四数之和的时间复杂度是O(n3) 。

那么一样的道理,五数之和、六数之和等等都采用这种解法。

class Solution {
    public List<List<Integer>> fourSum(int[] nums, int target) {
         List<List<Integer>> result= new ArrayList<>();
         Arrays.sort(nums);
         for(int i=0;i<nums.length;i++){
            if(nums[i]>0&& nums[i]>target){return result;}  // nums[i] > target 直接返回, 剪枝操作
            if(i>0&&nums[i-1]==nums[i]){continue;} // 对nums[i]去重
            for (int j=i+1;j<nums.length;j++){
                if(j>i+1&&nums[j-1]==nums[j]){continue;}// 对nums[j]去重
                int left=j+1;
                int right=nums.length-1;
                while(right>left){
		    // nums[k] + nums[i] + nums[left] + nums[right] > target int会溢出
                    long sum = (long) nums[i] + nums[j] + nums[left] + nums[right];
                    if (sum>target){right--;}
                    else if (sum<target){left++;}
                    else{
                        result.add(Arrays.asList(nums[i],nums[j],nums[left],nums[right]));
                        while (right>left && nums[left]==nums[left+1]){left++;}//对nums[left]\nums[right]去重
                        while (right>left && nums[right]==nums[right-1]){right--;}
                        right--;
                        left++;
                    }
                }
            }  
         }return result;

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值