算法设计与分析 实验三 B - 多元Huffman编码问题

本文探讨了一个石子合并问题,其中每次可以合并2到k堆石子,目标是计算合并成一堆时的最大和最小总费用。通过算法设计,我们可以找到最优解。示例展示了对于7堆石子和最大合并堆数k=3的情况,最大费用为593,最小费用为199。
摘要由CSDN通过智能技术生成

B - 多元Huffman编码问题
Description
在一个操场的四周摆放着n堆石子。现要将石子有次序地合并成一堆。规定每次至少选2 堆最多选k堆石子合并成新的一堆,合并的费用为新的一堆的石子数。试设计一个算法,计算出将n堆石子合并成一堆的最大总费用和最小总费用。
对于给定n堆石子,计算合并成一堆的最大总费用和最小总费用。

Input
输入数据的第1 行有2 个正整数n和k(n≤100000,k≤10000),表示有n堆石子,每次至少选2 堆最多选k堆石子合并。第2 行有n个数(每个数均不超过 100),分别表示每堆石子的个数。

Output
将计算出的最大总费用和最小总费用输出,两个整数之间用空格分开。

Sample
Input
7 3
45 13 12 16 9 5 22
Output
593 199

#include<bits/stdc++.h>
using namespace std;
int main(void)
{
   
    int n,k;
    long long sum1=0,sum2=0;
    priority_queue<int >q1;//队列由大到小排列(大顶堆)
    priority_queue<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值