首发于https://juejin.cn/post/6924222163868188679/,转载注明出处
GitHub
https://github.com/KinghooWei/VehicleSpeedRecognition
开门见山了,记得star一下呀
最终效果图
![]() |
![]() |
设计思路
项目的编程环境为python3.7.7,编译器使用pycharm2019.3.4 x64,视频序列30帧每秒。项目采用虚拟线圈法估算车速,取线圈内平均灰度值相对于没有车辆的线圈内平均灰度值的变化c作为对象特征,当c的绝对值大于某一阈值时,判断有汽车通过线圈。
基于虚拟线圈的车速检测算法
虚拟线圈法是利用虚拟感应线圈代替真实感应线圈,工作原理类似于地埋式线圈检测器。在图像上垂直于道路方向上定义2个检测线圈的位置,系统通过检测线圈的灰度变化来判断车辆经过,由车辆经过前后两个线圈的间隔帧数p、两个线圈在现实中的距离l和第二个线圈与停止线的距离s,可以估算出当前车辆的速度及撞线时间。该方法的优点是操作简单,耗时短,能够实时完成速度和撞线时间估计。算法的具体步骤如下:
-
确定两个虚拟线圈的位置、大小和倾斜角度,确保首帧序列的虚拟线圈内没有车辆,在视频序列中把虚拟线圈标注出来;
-
计算首帧序列在2个虚拟线圈中的平均灰度值,记为 a a