主成分分析

一、简介

  • 一个非监督的机器学习算法
  • 主要用于数据的降维
  • 通过降维,可以发现更便于人类理解的特征
  • 其他特征:可视化;去噪

在这里插入图片描述

  • 从二维降到一维

二、问题

  • 保留原有样本的特征?
  • 如何找到这个让样本间距最大的轴
  • 如何定义样本间间距
  • 使用方差
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

三、主成分分析法

  • 第一步:将样例的均值归为0

  • 所有的样本减去样本的均值

  • 得到的新样本的均值为0

  • 在这里插入图片描述在这里插入图片描述

  • 由于进行了demean处理,其均值为0,可以转化为下图方差公式
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 如何使用梯度上升法?
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

四、求数据的前N个主成分

在这里插入图片描述
在这里插入图片描述

import numpy as np


class PCA:

    def __init__(self, n_components):
        """初始化PCA"""
        assert n_components >= 1, "n_components must be valid"
        self.n_components = n_components
        self.components_ = None

    def fit(self, X, eta=0.01, n_iters=1e4):
        """获得数据集X的前n个主成分"""
        assert self.n_components <= X.shape[1], \
            "n_components must not be greater than the feature number of X"

        def demean(X):
            return X - np.mean(X, axis=0)

        def f(w, X):
            return np.sum((X.dot(w) ** 2)) / len(X)

        def df(w, X):
            return X.T.dot(X.dot(w)) * 2. / len(X)

        def direction(w):
            return w / np.linalg.norm(w)

        def first_component(X, initial_w, eta=0.01, n_iters=1e4, epsilon=1e-8):
            # 求第一主成分
            w = direction(initial_w)
            cur_iter = 0

            while cur_iter < n_iters:
                gradient = df(w, X)
                last_w = w
                w = w + eta * gradient
                w = direction(w)
                if (abs(f(w, X) - f(last_w, X)) < epsilon):
                    break

                cur_iter += 1

            return w

        X_pca = demean(X)
        self.components_ = np.empty(shape=(self.n_components, X.shape[1]))
        for i in range(self.n_components):
            initial_w = np.random.random(X_pca.shape[1])
            w = first_component(X_pca, initial_w, eta, n_iters)
            self.components_[i,:] = w

            X_pca = X_pca - X_pca.dot(w).reshape(-1, 1) * w

        return self

    def transform(self, X):
        """将给定的X,映射到各个主成分分量中"""
        assert X.shape[1] == self.components_.shape[1]

        return X.dot(self.components_.T)

    def inverse_transform(self, X):
        """将给定的X,反向映射回原来的特征空间"""
        assert X.shape[1] == self.components_.shape[0]

        return X.dot(self.components_)

    def __repr__(self):
        return "PCA(n_components=%d)" % self.n_components

在这里插入图片描述

  • 主成分分析之后各第几主成分互相垂直
    在这里插入图片描述

  • 高维数据向低维数据映射
    在这里插入图片描述

  • 低维数据向高维数据转换
    在这里插入图片描述
    在这里插入图片描述

from sklearn.decomposition import PCA
pca = PCA(n_components=1)
pca.fit(X)

在这里插入图片描述

在这里插入图片描述

  • 方差
    在这里插入图片描述
  • 每个主成分的方差
    在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

五、MNIST

import numpy as np
from sklearn.datasets import fetch_mldata # 从官方网站下载数据集
mnist = fetch_mldata('MNIST original')
X,y = mnist['data'],mnist['target']
from sklearn.datasets.base import get_data_home 
print (get_data_home()) # 如我的电脑上的目录为: C:\Users\95232\scikit_learn_data

在这里插入图片描述

X_train = np.array(X[:60000],dtype=float)
y_train = np.array(y[:60000],dtype=float)
X_test = np.array(X[60000:],dtype=float)
y_test = np.array(X[60000:],dtype=float)

在这里插入图片描述

from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier()
%time knn_clf.fit(X_train,y_train)

在这里插入图片描述

%time knn_clf.score(X_test,y_test)
  • 使用PCA降维
from sklearn.decomposition import PCA

pca = PCA(0.9)
pca.fit(X_train)
X_train_reduction = pca.transform(X_train)

knn_clf = KNeighborsClassifier()
%time knn_clf.fit(X_train_reduction,y_train)
X_test_reduction = pca.transform(X_test)
%time knn_clf.score(X_test_reduction,y_test)

可能由于数据维度太多,KNN算法计算量太大,并不能进行很好的预测分类,并不能得出结果
在这里插入图片描述

  • 但是理论上是,PCA降维后比未降维前的数据,预测准确率更高。
  • 原因是PCA降维算法有个降噪的强大功能

六、使用PCA降噪

  • 手写识别的例子降噪
from sklearn import datasets
digits = datasets.load_digits()
X = digits.data
y = digits.target

在这里插入图片描述
设置噪音值

noisy_digits = X + np.random.normal(0,4,size = X.shape)

和X值链接

example_digits = noisy_digits[y==0,:][:10]
for num in range(1,10):
    X_num = noisy_digits[y==num,:][:10]
    example_digits = np.vstack([example_digits,X_num])
    # vstack链接在一起

在这里插入图片描述
绘制图像

def plot_digits(data):
    fig,axes = plt.subplots(10,10,figsize=(10,10),
                           subplot_kw = {'xticks':[],'yticks':[]},
                           gridspec_kw = dict(hspace=0.1,wspace=0.1))
    for i,ax in enumerate(axes.flat):
        ax.imshow(data[i].reshape(8,8),
                 cmap='binary',interpolation='nearest',
                 clim = (0,16))
    plt.show()
    
plot_digits(example_digits)

在这里插入图片描述

PCA降噪

pca = PCA(0.5)
pca.fit(noisy_digits)

在这里插入图片描述

pca.n_components_

在这里插入图片描述

降到了12维

components = pca.transform(example_digits)
components #降维后的结果

在这里插入图片描述
绘制由降维的数据转化为原始维度的数据

filtered_digits = pca.inverse_transform(components)
# 转化未降维之前的数值,不过去过了噪音值
plot_digits(filtered_digits)

在这里插入图片描述

从图中可以明显看出噪音点降低了

七、特征脸

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_lfw_people
faces = fetch_lfw_people()

在这里插入图片描述

faces.keys()

在这里插入图片描述

random_indexes = np.random.permutation(len(faces.data))
X = faces.data[random_indexes]

在这里插入图片描述
在这里插入图片描述

def plot_faces(data):
    fig,axes = plt.subplots(6,6,figsize=(10,10),
                           subplot_kw = {'xticks':[],'yticks':[]},
                           gridspec_kw = dict(hspace=0.1,wspace=0.1))
    for i,ax in enumerate(axes.flat):
        ax.imshow(faces[i].reshape(62,47),
                 cmap='bone')
    plt.show()
    
plot_faces(example_faces)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

== PCA降维==

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值