BoxCox以及反变换的简介和Python实现

一、BoxCox变换

1 基本含义

Box-Cox变换是一种广义幂变换方法,用于连续的响应变量不满足正态分布的情况。Box-Cox变换之后,可以一定程度上减小不可观测的误差和预测变量的相关性。Box-Cox变换的主要特点是引入一个参数lambda,通过数据本身估计该参数进而确定应采取的数据变换形式,Box-Cox变换可以明显地改善数据的正态性、对称性和方差相等性,对许多实际数据都是行之有效的(摘自百度百科)。
我认为最关键的是这一点:Box-Cox变换通过对因变量进行变换,使得变换过的向量与回归自变量具有线性相依关系,误差也服从正态分布.误差各分量是等方差且相互独立,故Box-Cox变换是通过参数的适当选择。达到对原来数据的“综合治理”,使其满足一个正态线性回归模型的所有假设条件。
他不是仅仅为了使原数据集变换为正态分布,所以他与Z-Score标准化不同,从我了解的角度,Box-Cox变换兼顾了变量在时间序列维度上的回归特性,所以经常用于时间序列方面的预测

2 公式表示

Box-Cox公式为:
在这里插入图片描述
但是Box-Cox要求y>0,否则在python中会报如下错误信息:

  • ValueError: Data must be positiv
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值