计算机毕设——基于python招聘数据分析可视化系统

目录

一、项目介绍

二、项目部分功能展示


一、项目介绍

随着经济的发展和就业人口的增加,中国的就业形势日益严峻。据统计,2023年中国的就业压力将进一步加大, 就业难度将进一步增加。 在这样的背景下,如何更好地了解就业市场的趋势和变化,提高求职成功率,成为了广大求职者所关注的重要问题。同时,随着互联网技术的发展,网络招聘成为求职者获取就业信息的重要途径。

本文的招聘数据可视化平台主要采用了基于Python的Django框架和Selenium技术进行设计。首先,我们利用网络爬虫把所需的信息全部爬取出来,然后再把所收集到的数据保存在数据库中。其次,对收集到的招聘信息进行预处理,然后对经过预处理的信息进行分析。最后再利用ECharts的图表库以及Bootstrap前端架构,对数据分析的图形化结果加以呈现。

二、项目部分功能展示

1.首页

2. 登录页

 3.薪资情况

 4.企业情况

 5.福利词云

 6.学历分布

B站视频展示(源码可在工坊获取):基于python招聘数据分析可视化系统

### 设计基于数据分析可视化的房屋租赁系统 #### 架构概述 构建一个基于数据分析可视化的房屋租赁系统涉及多个方面,从前端用户界面到后端的数据处理逻辑。为了使该系统功能完备且易于维护,建议采用分层架构设计模式。前端部分负责与用户的交互,而后端则专注于业务逻辑和数据管理。 #### 技术栈选择 对于此类项目的开发,推荐的技术组合如下: - **前端框架**:Flask用于搭建Web应用程序[^1]。 - **数据库管理系统**:SQLite或MySQL作为存储房源信息和其他相关记录的选择。 - **可视化工具**:Matplotlib和Plotly用于创建直观的图表来表示租金趋势、地理位置分布等统计分析结果。 #### 功能模块描述 ##### 用户注册登录模块 允许新访客注册账户以及现有成员通过用户名密码验证进入平台。此过程需遵循安全编码实践以保护个人信息的安全性。 ##### 数据录入更新模块 管理员可以通过这个接口批量导入新的出租房资源列表;普通用户也可以提交自己的房产供租售。确保输入字段的有效性和一致性至关重要。 ##### 预测模型集成模块 利用机器学习算法(如线性回归或其他更复杂的神经网络结构),根据历史交易价格等因素对未来房租走势做出预估。这部分工作可能涉及到训练集准备、特征工程等一系列前期准备工作。 ```python from sklearn.linear_model import LinearRegression import pandas as pd def train_rent_prediction_model(dataframe:pd.DataFrame)->LinearRegression: X = dataframe[['size', 'location_score']] # 特征列 y = dataframe['price'] # 目标变量 model = LinearRegression() model.fit(X, y) return model ``` ##### 可视化展示模块 一旦完成了预测计算,则可通过图形方式呈现这些结论给最终使用者看。比如绘制柱状图对比不同区域内的平均月租金水平差异,或是折线图显示某段时间内特定地点的价格波动情况。 ```python import matplotlib.pyplot as plt def plot_average_prices_by_area(areas:list, avg_prices:list): fig, ax = plt.subplots() bars = ax.barh(areas[::-1], avg_prices[::-1]) ax.set_xlabel('Average Price (USD)') ax.set_title('Average Monthly Rent by Area') plt.show() ``` #### 文档编写指南 文档应当覆盖整个项目周期中的各个阶段——需求调研报告、设计方案说明书、测试计划书直至部署手册。特别是针对那些非技术人员阅读者来说,清晰明了的文字表述加上必要的截图辅助解释将会大大提高理解效率。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

红龙创客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值