Unsupervised Learning: PCA(Ⅰ)
如果本文对你有帮助,请给我的github打个star叭,上面附有全系列目录和内容!
注:更多优质内容欢迎关注我的微信公众号“Sakura的知识库”:
本文将主要介绍PCA算法的数学推导过程
上一篇文章提到,PCA算法认为降维就是一个简单的linear function,它的input x和output z之间是linear transform,即 z = W x z=Wx z=Wx,PCA要做的,就是根据 x x x把W给找出来( z z z未知)
PCA for 1-D
为了简化问题,这里我们假设z是1维的vector,也就是把x投影到一维空间,此时w是一个row vector
z 1 = w 1 ⋅ x z_1=w^1\cdot x z1=w1⋅x,其中 w 1 w^1 w1表示 w w w的第一个row vector,假设 w 1 w^1 w1的长度为1,即 ∣ ∣ w 1 ∣ ∣ 2 = 1 ||w^1||_2=1 ∣∣w1∣∣2=1,此时 z 1 z_1 z1就是 x x x在 w 1 w^1 w1方向上的投影
那我们到底要找什么样的 w 1 w^1 w1呢?
假设我们现在已有的宝可梦样本点分布如下,横坐标代表宝可梦的攻击力,纵坐标代表防御力,我们的任务是把这个二维分布投影到一维空间上
我们希望选这样一个 w 1 w^1 w1,它使得 x x x经过投影之后得到的 z 1 z_1 z1分布越大越好,也就是说,经过这个投影后,不同样本点之间的区别,应该仍然是可以被看得出来的,即:
-
我们希望找一个projection的方向,它可以让projection后的variance越大越好
-
我们不希望projection使这些data point通通挤在一起,导致点与点之间的奇异度消失
-
其中,variance的计算公式: V a r ( z 1 ) = 1 N ∑ z 1 ( z 1 − z 1 ˉ ) 2 , ∣ ∣ w 1 ∣ ∣ 2 = 1 Var(z_1)=\frac{1}{N}\sum\limits_{z_1}(z_1-\bar{z_1})^2, ||w^1||_2=1 Var(z1)=N1z1∑(z1−z1ˉ)2,∣∣w1∣∣2=1, z 1 ˉ \bar {z_1} z1ˉ是 z 1 z_1 z1的平均值
下图给出了所有样本点在两个不同的方向上投影之后的variance比较情况

PCA for n-D
当然我们不可能只投影到一维空间,我们还可以投影到更高维的空间
对 z = W x z=Wx z=Wx来说:
- z 1 = w 1 ⋅ x z_1=w^1\cdot x z1=w1⋅x,表示 x x x在 w 1 w^1 w1方向上的投影
- z 2 = w 2 ⋅ x z_2=w^2\cdot x z2=w2⋅x,表示 x x x在 w 2 w^2 w2方向上的投影
- …
z 1 , z 2 , . . . z_1,z_2,... z1,z2,...串起来就得到 z z z,而 w 1 , w 2 , . . . w^1,w^2,... w1,w2,...分别是 W W W的第1,2,…个row,需要注意的是,这里的 w i w^i wi必须相互正交,此时 W W W是正交矩阵(orthogonal matrix),如果不加以约束,则找到的 w 1 , w 2 , . . . w^1,w^2,... w1,w2,...实际上是相同的值

Lagrange multiplier
求解PCA,实际上已经有现成的函数可以调用,此外你也可以把PCA描述成neural network,然后用gradient descent的方法来求解,这里主要介绍用拉格朗日乘数法(Lagrange multiplier)求解PCA的数学推导过程
注: w i w^i wi和 x x x均为列向量,下文中类似 w i ⋅ x w^i\cdot x wi⋅x表示的是矢量内积,而 ( w i ) T ⋅ x (w^i)^T\cdot x (wi)T⋅x表示的是矩阵相乘
calculate w 1 w^1 w1
目标:maximize $(w1)TSw^1 , 条 件 : ,条件: ,条件:(w1)Tw^1=1$
-
首先计算出 z 1 ˉ \bar{z_1} z1ˉ:
KaTeX parse error: No such environment: split at position 10: \begin{̲s̲p̲l̲i̲t̲}̲ &z_1=w^1\cdo…
-
然后计算maximize的对象 V a r ( z − 1 ) Var(z-1) Var(z−1):
其中 C o v ( x ) = 1 N ∑ ( x − x ˉ ) ( x − x ˉ ) T Cov(x)=\frac{1}{N}\sum(x-\bar x)(x-\bar x)^T Cov(x)=N1∑(x−xˉ)(x−xˉ)T
KaTeX parse error: No such environment: split at position 10: \begin{̲s̲p̲l̲i̲t̲}̲ Var(z_1)&=\f…
-
当然这里想要求 V a r ( z 1 ) = ( w 1 ) T C o v ( x ) w 1 Var(z_1)=(w^1)^TCov(x)w^1 Var(z1)=(w1)TCov(x)w1的最大值,还要加上 ∣ ∣ w 1 ∣ ∣ 2 = ( w 1 ) T w 1 = 1 ||w^1||_2=(w^1)^Tw^1=1 ∣∣w1∣∣2=(w1)Tw1=1的约束条件,否则 w 1 w^1 w1可以取无穷大
-
令 S = C o v ( x ) S=Cov(x) S=Cov(x),它是:
- 对称的(symmetric)
- 半正定的(positive-semidefine)
- 所有特征值(eigenvalues)非负的(non-negative)
-
使用拉格朗日乘数法,利用目标和约束条件构造函数:
g ( w 1 ) = ( w 1 ) T S w 1 − α ( ( w 1 ) T w 1 − 1 ) g(w^1)=(w^1)^TSw^1-\alpha((w^1)^Tw^1-1) g(w1)=(w1)TSw1−α((w1)Tw1−1)
-
对 w 1 w^1 w1这个vector里的每一个element做偏微分:
∂ g ( w 1 ) / ∂ w 1 1 = 0 ∂ g ( w 1 ) / ∂ w 2 1 = 0 ∂ g ( w 1 ) / ∂ w 3 1 = 0 . . . \partial g(w^1)/\partial w_1^1=0\\ \partial g(w^1)/\partial w_2^1=0\\ \partial g(w^1)/\partial w_3^1=0\\ ... ∂g(w1)/∂w11=0∂g(w1)/∂w21=0∂g(w1)/∂w31=0...
-
整理上述推导式,可以得到:
其中, w 1 w^1 w1是S的特征向量(eigenvector)
S w 1 = α w 1 Sw^1=\alpha w^1 Sw1=αw1
-
注意到满足 ( w 1 ) T w 1 = 1 (w^1)^Tw^1=1 (w1)Tw1=1的特征向量 w 1 w^1 w1有很多,我们要找的是可以maximize ( w 1 ) T S w 1 (w^1)^TSw^1 (w1)TSw1的那一个,于是利用上一个式子:
( w 1 ) T S w 1 = ( w 1 ) T α w 1 = α ( w 1 ) T w 1 = α (w^1)^TSw^1=(w^1)^T \alpha w^1=\alpha (w^1)^T w^1=\alpha (w1)TSw1=(w1)Tαw1=α(w1)Tw1=α
-
此时maximize ( w 1 ) T S w 1 (w^1)^TSw^1 (w1)TSw1就变成了maximize α \alpha α,也就是当 S S S的特征值 α \alpha α最大时对应的那个特征向量 w 1 w^1 w1就是我们要找的目标
-
结论: w 1 w^1 w1是 S = C o v ( x ) S=Cov(x) S=Cov(x)这个matrix中的特征向量,对应最大的特征值 λ 1 \lambda_1 λ1

calculate w 2 w^2 w2
在推导 w 2 w^2 w2时,相较于 w 1 w^1 w1,多了一个限制条件: w 2 w^2 w2必须与 w 1 w^1 w1正交(orthogonal)
目标:maximize ( w 2 ) T S w 2 (w^2)^TSw^2 (w2)TSw2,条件: ( w 2 ) T w 2 = 1 , ( w 2 ) T w 1 = 0 (w^2)^Tw^2=1,(w^2)^Tw^1=0 (w2)Tw2=1,(w2)Tw1=0
结论: w 2 w^2 w2也是 S = C o v ( x ) S=Cov(x) S=Cov(x)这个matrix中的特征向量,对应第二大的特征值 λ 2 \lambda_2 λ2
-
同样是用拉格朗日乘数法求解,先写一个关于 w 2 w^2 w2的function,包含要maximize的对象,以及两个约束条件
g ( w 2 ) = ( w 2 ) T S w 2 − α ( ( w 2 ) T w 2 − 1 ) − β ( ( w 2 ) T w 1 − 0 ) g(w^2)=(w^2)^TSw^2-\alpha((w^2)^Tw^2-1)-\beta((w^2)^Tw^1-0) g(w2)=(w2)TSw2−α((w2)Tw2−1)−β((w2)Tw1−0)
-
对 w 2 w^2 w2的每个element做偏微分:
∂ g ( w 2 ) / ∂ w 1 2 = 0 ∂ g ( w 2 ) / ∂ w 2 2 = 0 ∂ g ( w 2 ) / ∂ w 3 2 = 0 . . . \partial g(w^2)/\partial w_1^2=0\\ \partial g(w^2)/\partial w_2^2=0\\ \partial g(w^2)/\partial w_3^2=0\\ ... ∂g(w2)/∂w12=0∂g(w2)/∂w22=0∂g(w2)/∂w32=0...
-
整理后得到:
S w 2 − α w 2 − β w 1 = 0 Sw^2-\alpha w^2-\beta w^1=0 Sw2−αw2−βw1=0
-
上式两侧同乘 ( w 1 ) T (w^1)^T (w1)T,得到:
( w 1 ) T S w 2 − α ( w 1 ) T w 2 − β ( w 1 ) T w 1 = 0 (w^1)^TSw^2-\alpha (w^1)^Tw^2-\beta (w^1)^Tw^1=0 (w1)TSw2−α(w1)Tw2−β(w1)Tw1=0
-
其中 α ( w 1 ) T w 2 = 0 , β ( w 1 ) T w 1 = β \alpha (w^1)^Tw^2=0,\beta (w^1)^Tw^1=\beta α(w1)Tw2=0,β(w1)Tw1=β,
而由于 ( w 1 ) T S w 2 (w^1)^TSw^2 (w1)TSw2是vector×matrix×vector=scalar,因此在外面套一个transpose不会改变其值,因此该部分可以转化为:
注:S是symmetric的,因此 S T = S S^T=S ST=S
KaTeX parse error: No such environment: split at position 10: \begin{̲s̲p̲l̲i̲t̲}̲ (w^1)^TSw^2&…
我们已经知道 w 1 w^1 w1满足 S w 1 = λ 1 w 1 Sw^1=\lambda_1 w^1 Sw1=λ1w1,代入上式:
KaTeX parse error: No such environment: split at position 10: \begin{̲s̲p̲l̲i̲t̲}̲ (w^1)^TSw^2&… -
因此有 ( w 1 ) T S w 2 = 0 (w^1)^TSw^2=0 (w1)TSw2=0, α ( w 1 ) T w 2 = 0 \alpha (w^1)^Tw^2=0 α(w1)Tw2=0, β ( w 1 ) T w 1 = β \beta (w^1)^Tw^1=\beta β(w1)Tw1=β,又根据
( w 1 ) T S w 2 − α ( w 1 ) T w 2 − β ( w 1 ) T w 1 = 0 (w^1)^TSw^2-\alpha (w^1)^Tw^2-\beta (w^1)^Tw^1=0 (w1)TSw2−α(w1)Tw2−β(w1)Tw1=0
可以推得 β = 0 \beta=0 β=0
-
此时 S w 2 − α w 2 − β w 1 = 0 Sw^2-\alpha w^2-\beta w^1=0 Sw2−αw2−βw1=0就转变成了 S w 2 − α w 2 = 0 Sw^2-\alpha w^2=0 Sw2−αw2=0,即
S w 2 = α w 2 Sw^2=\alpha w^2 Sw2=αw2
-
由于 S S S是symmetric的,因此在不与 w 1 w_1 w1冲突的情况下,这里 α \alpha α选取第二大的特征值 λ 2 \lambda_2 λ2时,可以使 ( w 2 ) T S w 2 (w^2)^TSw^2 (w2)TSw2最大
-
结论: w 2 w^2 w2也是 S = C o v ( x ) S=Cov(x) S=Cov(x)这个matrix中的特征向量,对应第二大的特征值 λ 2 \lambda_2 λ2

PCA-decorrelation
z = W ⋅ x z=W\cdot x z=W⋅x
神奇之处在于 C o v ( z ) = D Cov(z)=D Cov(z)=D,即z的covariance是一个diagonal matrix,推导过程如下图所示
PCA可以让不同dimension之间的covariance变为0,即不同new feature之间是没有correlation的,这样做的好处是,减少feature之间的联系从而减少model所需的参数量
如果你把原来的input data通过PCA之后再给其他model使用,那这些model就可以使用简单的形式,而无需考虑不同dimension之间类似 x 1 ⋅ x 2 , x 3 ⋅ x 5 3 , . . . x_1\cdot x_2,x_3\cdot x_5^3,... x1⋅x2,x3⋅x53,...这些交叉项,此时model得到简化,参数量大大降低,相同的data量可以得到更好的训练结果,从而可以避免overfitting的发生

本文主要介绍的是PCA的数学推导,如果你理解起来有点困难,那下一篇文章将会从另一个角度解释PCA算法的原理~