2021-10-24

浅析圆概率误差

圆概率误差(Circular Error Probable — CEP)是衡量炮弹命中精度的一个尺度,又称圆公算偏差。
圆概率误差是这样得出的,在相同的条件下,向目标中心发射多枚炮弹,由于多种因素的影响,炮弹的弹着点(图中黑点所示)将在目标中心附近形成散布,其平均弹着点(散布中心)到瞄准点(一般为目标中心)的距离为炮弹的系统误差,每个弹着点到平均弹着点(散布中心)的距离称为随机误差,以平均弹着点(散布中心)为中心,包含50%弹着点的半径就叫做这种炮弹的圆概率误差。如下图所示
圆概率误差示意图
注:半径R越小,说明炮弹的命中率越高。
原理推导:一个点数据集,以平均中心为中心,以圆概率误差(CEP)为半径画个圆,那么该点数据集中的点有50%将落入到圆中。
计算公式如下:
(1) 设点数据集的平均中心的X值和Y值分别为:在这里插入图片描述
为散布中心
在这里插入图片描述
(2) 点数据集所有点的X坐标的标准差为:
在这里插入图片描述
(3) 点数据集所有点的Y坐标的标准差为:
在这里插入图片描述
(4) 点数据集距离标准差为:
在这里插入图片描述
(5) 求圆概率误差CEP,以平均中心为圆心,CEP为半径,点落入概率为50%
在这里插入图片描述
弹着点计算
在这里插入图片描述是n个弹着点 在这里插入图片描述
的距离, 在这里插入图片描述
是距离的平方。
在这里插入图片描述
matlab 代码实现

close all;
clear;
clc;
x=[1 2 3 4 5 6]; %二维坐标,拆分为x ,轴与y轴目标点为(11)(22...66)
y=[1 2 3 4 5 6];
x1=mean(x);%求x平均值
y1=mean(y);%求y平均值
sigma_x=var(x,1);%x的标准差
sigma_y=var(y,1);%y的标准差
Cep=sqrt(sigma_x+sigma_y);%圆概率误差
R=Cep*0.589;%圆概率误差(0.589为覆盖50%点的系数)

注:转载自:
https://blog.csdn.net/ganquan78/article/details/102753436
http://www.doc88.com/p-9932006361367.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值