pytorch的nn.ConvTranspose2d()反卷积函数参数及尺寸计算详解

参数详解

in_channels,
#输入数据的通道数
out_channels,
#输出数据的通道数(就是我想让输出多少通道,就设置为多少)
kernel_size,
#卷积核的尺寸(如(3,2),3与(3,3)等同)
stride=1,
#卷积步长,就是卷积操作时每次移动的格子数
padding=0,
#原图周围需要填充的格子行(列)数
output_padding=0,
#输出特征图边缘需要填充的行(列)数,一般不设置
groups=1,
#分组卷积的组数,一般默认设置为1,不用管
bias=True
#卷积偏置,一般设置为False,True的话可以增加模型的泛化能力

torch.nn.ConvTranspose2d(   in_channels,  
  • 17
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
nn.ConvTranspose2dPyTorch中的一个类,用于实现反卷积操作。它的参数包括输入通道数(in_channels)、输出通道数(out_channels)、卷积核大小(kernel_size)、步长(stride)、填充(padding)、输出填充(output_padding)、分组数(groups)、是否使用偏置(bias)、扩张率(dilation)、填充模式(padding_mode)等。\[2\] 反卷积操作可以通过插值和卷积两步操作来实现。在插值操作中,可以选择是否进行插值和padding操作,具体取决于步长(stride)的大小。如果步长为1,则不进行插值操作,只进行padding操作;如果步长大于1,则进行插值操作。接下来执行卷积操作,将插值后的输入与转置后的权重进行卷积运算。最后,可以将反卷积操作转换为卷积操作。\[1\]\[3\] 需要注意的是,torch.nn.ConvTranspose2d默认权重的排布方式和torch.nn.Conv2d是不同的,需要进行重新排布再进行常规的卷积操作。可以使用相应的函数将反卷积操作转换为插值和卷积两步操作。\[1\] 总结起来,nn.ConvTranspose2d是用于实现反卷积操作的类,可以通过插值和卷积两步操作来实现。在转换为卷积操作时,需要注意权重的排布方式。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* *3* [反卷积torch.nn.ConvTranspose2d详解(含转换成卷积运算的代码示例)](https://blog.csdn.net/cc__cc__/article/details/121444692)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值