B. Polycarp Training

Polycarp wants to train before another programming competition. During the first day of his training he should solve exactly 1 problem, during the second day — exactly 2 problems, during the third day — exactly 3 problems, and so on. During the k-th day he should solve k problems.

Polycarp has a list of n contests, the i-th contest consists of ai problems. During each day Polycarp has to choose exactly one of the contests he didn’t solve yet and solve it. He solves exactly k problems from this contest. Other problems are discarded from it. If there are no contests consisting of at least k problems that Polycarp didn’t solve yet during the k-th day, then Polycarp stops his training.

How many days Polycarp can train if he chooses the contests optimally?

Input

The first line of the input contains one integer n (1≤n≤2⋅105) — the number of contests.

The second line of the input contains n integers a1,a2,…,an (1≤ai≤2⋅105) — the number of problems in the i-th contest.

Output

Print one integer — the maximum number of days Polycarp can train if he chooses the contests optimally.

Examples

input

4
3 1 4 1

output

3

input

3
1 1 1

output

1

input

5
1 1 1 2 2

output

2

思路:

这道很简单,是一道水题,暴力题,只要有比今天做的题数多的比赛,那么就进行下一天就行,如果再不懂看一下代码就一定能懂

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<queue>
#include<vector>
#include<set>
#define ll long long
#define mes(x,y) memset(x,y,sizeof(x))
using namespace std;
int main(){
	ll n,a[200030],i;
	while(cin>>n){
		mes(a,0);
		for(i=0;i<n;i++)cin>>a[i];
		sort(a,a+n);ll no=1;
		for(i=0;i<n;i++){
			if(a[i]>=no){
				no++;
			}
		}
		cout<<no-1<<endl;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUESSERR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值