Polycarp wants to train before another programming competition. During the first day of his training he should solve exactly 1 problem, during the second day — exactly 2 problems, during the third day — exactly 3 problems, and so on. During the k-th day he should solve k problems.
Polycarp has a list of n contests, the i-th contest consists of ai problems. During each day Polycarp has to choose exactly one of the contests he didn’t solve yet and solve it. He solves exactly k problems from this contest. Other problems are discarded from it. If there are no contests consisting of at least k problems that Polycarp didn’t solve yet during the k-th day, then Polycarp stops his training.
How many days Polycarp can train if he chooses the contests optimally?
Input
The first line of the input contains one integer n (1≤n≤2⋅105) — the number of contests.
The second line of the input contains n integers a1,a2,…,an (1≤ai≤2⋅105) — the number of problems in the i-th contest.
Output
Print one integer — the maximum number of days Polycarp can train if he chooses the contests optimally.
Examples
input
4
3 1 4 1
output
3
input
3
1 1 1
output
1
input
5
1 1 1 2 2
output
2
思路:
这道很简单,是一道水题,暴力题,只要有比今天做的题数多的比赛,那么就进行下一天就行,如果再不懂看一下代码就一定能懂
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<iomanip>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<queue>
#include<vector>
#include<set>
#define ll long long
#define mes(x,y) memset(x,y,sizeof(x))
using namespace std;
int main(){
ll n,a[200030],i;
while(cin>>n){
mes(a,0);
for(i=0;i<n;i++)cin>>a[i];
sort(a,a+n);ll no=1;
for(i=0;i<n;i++){
if(a[i]>=no){
no++;
}
}
cout<<no-1<<endl;
}
}