脑电EEG代码开源分享【文档+代码+经验】
文章平均质量分 97
本文档旨在归纳BCI-EEG-matlab的数据处理代码,作为EEG数据处理的总结,方便快速搭建处理框架的Baseline,实现自动化、模块插拔化、快速化。
Coco恺撒
免费拿走,全部开源,全部无偿分享~
脑机接口+人工智领域,主攻大脑模式解码、身份认证、仿脑模型... 在读博士第3年,在最后1年,希望将代码、文档、经验、掉坑的经历分享给大家~ 做的不好请大佬们多批评、多指导~ 虚心向大伙请教! 想一起做些事情 or 奇奇怪怪点子 or 单纯批评我的,请至Rongkaizhang_bci@163.com
展开
-
脑电EEG代码开源分享 【6. 分类模型-深度学习篇】
科学家认为目前的深度学习瓶颈需要人脑结构的启发,类脑智能逐渐兴起,人脑智能的感知能力 + 机器智能的高效处理,混合智能在不断探索。分类模型-深度学习篇主要介绍了基础的网络结构框架 ,将深度学习解决脑电领域问题,形成【BCI + AI】的处理框架,为脑机接口的科研开辟了新赛道、新领域。本文介绍了3种经典模型架构,分别是:图像领域的卷积神经网络(CNN),语音领域的长短时记忆网络(LSTM),社交领域的图神经网络(GNN)。大家可以根据自己的任务需要和数据特点,神经网络的灵活性和模块化方便广大学者尝试和探原创 2022-09-29 17:53:02 · 11509 阅读 · 12 评论 -
脑电EEG代码开源分享 【6.分类模型-机器学习篇】
分类模型-机器学习篇主要介绍了基础的机器学习算法,使用matlab 自带的分类器函数分类。为了方便同学的分类器尝试,列出了常用的 6种分类器,并且附带了简单的融合分类模型。7种分类器各有优势,对相同的特征的分类性能也有差异,建议大家广泛尝试,总结形成自己应用分类器经验。准确的分类、识别、决策、判断,自古以来就是现实中要面对的难题,神经网络的火热离不开猫狗分类的ImageNet。通过脑电信号反推刺激类别、预测脑响应模式,此类大脑解码问题,不仅有助于脑机接口(BCI)应用,还会辅助机制分析,脑活动建模。原创 2022-09-28 17:22:37 · 4856 阅读 · 4 评论 -
脑电EEG代码开源分享 【5.特征选择】
特征选择就是从量化的角度,在庞大的候选数据集中择优选取少量优质特征,个人总结发现特征选择的必要性至少有以下4点: 1. 准确性:特征候选集中的劣质特征反而影响分类性能。 2. 鲁棒性:过多的特征会导致分类器过拟合。 3. 即时性:特征候选集占据内存和运算量。 4. 实用性:特征也可以作为指标用于病情定级和认知调控。对于脑电这类实验科学,面对陌生且新颖的试验任务数据,最快最有效的方法就是:广撒网,多敛鱼,择优而从之。特征决定上限,而分类器只是逼近这个上限。原创 2022-09-27 21:58:20 · 3942 阅读 · 1 评论 -
脑电EEG代码开源分享 【4.特征提取-空域篇】
空域特征的主要思路是赋予导联不同权重,关注重要导联对目标任务的作用,其思想很接近目前深度学习中热门的注意力机制,通过更新注意力模块权重获得了显著的分类性能提升,相关注意力机制的研究获得了多个顶会的best paper。除了软性的空间滤波赋予各导联权重,硬性的导联选择更具有显示应用价值。通过选取最重要的20%甚至更少导联数量,对高密度导联进行约减。现实意义在于:1.降低了佩戴、安装、准备的操作时间,降低了设备和耗材成本。 2.导联数量降低运算量,相应降低特征个数缓解过拟合问题。原创 2022-09-26 22:42:38 · 4388 阅读 · 6 评论 -
脑电EEG代码开源分享 【4.特征提取-时频域篇】
时频域特征融合了各自的长处,交叉了时域频域的信息,方便研究人员更全面的了解信号特点。时域多一点、还是频域多一点,就成了时频域常面临的平衡问题。目前时频特征还是在长时任务中应用较多,归因于时频分解还是注重频带的信息,长时任务有较宽的频带能量分布,而任务态脑电的频域集中在低频。本文着重介绍的EMD算法,突出了自适应的基底优势,建议新入门的朋友可以尝试使用。目前多样性的特征还在不断发展、丰富,新的特征提取方法逐渐多元化。进阶特征如脑网络、拓扑图等,人工智能端到端特征提取方法,会在新的专栏中介绍。原创 2022-09-26 08:57:16 · 8782 阅读 · 3 评论 -
脑电EEG代码开源分享 【4.特征提取-频域篇】
个人认为脑电EEG具有特征处理风格,锁时任务特征偏时域,长时任务特征偏频域。本系列将脑电任务分为锁时、长时的原因也在此。大脑神经元放电产生振荡、节律信息,科学家对对节律的探索仍是起步和模糊状态。脑电作为一种随机性+节律性的神经信号,目前对节律性的频谱分析较多。但对随机性的探索还不足,推荐大家结合随机信号分析推出新的见解。同时,对经典特征的融合、组合也是发掘更优混合特征的常用方式。大家可以探索和发掘是用自己研究的优质特征策略。原创 2022-09-25 17:19:06 · 9450 阅读 · 5 评论 -
脑电EEG代码开源分享 【4.特征提取-时域篇】
特征提取作为承上启下的重要阶段,承上,紧接预处理结果和可视化分析,对庞大的原始数据进行凝练,用少量维度指标表征整体数据特点;启下,这些代表性、凝练性的特征指标量化了数据性能,为后续的认知解码、状态监测、神经调控等现实需求提供参考。本文特征主要为手动设置的经验特征,大多源于脑科学及认知科学的机制结论,提取的特征具有可解释的解剖、认知、物理含义;也有部分是工程人员的实践发现,在模型性能提升中效果显著。 脑电在时间分辨率的优势,注定其在时域有丰富的潜在特征,从有严谨推导的统计特征,逐步扩展至实用有效地熵类特征原创 2022-09-24 22:49:26 · 11648 阅读 · 6 评论 -
脑电EEG代码开源分享 【3.可视化分析-任务态篇】
任务态的可视化突出刺激的锁时特性(时间锚点),对比刺激前后的脑模式,可分析大脑对任务刺激的响应,脑响应分析常涉及到时域成分、空域脑区等。可视化是对脑电数据状态的直观呈现,既是对已处理信号的检查回顾,也是为下一步处理提供借鉴通过时域抖动观察时序成分,频域能谱分析节律特征,空域分布了解脑区激活避免从数据输入 到结果输出全程 端到端黑盒,中间缺少对数据的把控。本文档旨在归纳BCI-EEG-matlab的数据处理代码,作为EEG数据处理的总结,方便快速搭建处理框架的Baseline,实现自动化、模块插拔、快速化原创 2022-09-24 13:54:44 · 3335 阅读 · 4 评论 -
脑电EEG代码开源分享【3.可视化分析-静息态篇】
可视化是对脑电数据状态的直观呈现,既是对已处理信号的检查回顾,也是为下一步处理提供借鉴通过时域抖动观察时序成分,频域能谱分析节律特征,空域分布了解脑区激活脑电信号可视化有助于对处理数据综合信息的掌握,是最直观了解数据状态的方法同时,可视化应注重多维度、多角度分析,从不同特征域对数据进行全面了解.本文档旨在归纳BCI-EEG-matlab的数据处理代码,作为EEG数据处理的总结,方便快速搭建处理框架的Baseline,实现自动化、模块插拔化、快速化。原创 2022-09-23 23:27:49 · 4594 阅读 · 9 评论 -
脑电EEG代码开源分享 【2.预处理-任务态篇】
本文以任务态(锁时刺激,如快速序列视觉呈现)为例,分享脑电EEG的分析处理方法。本文档旨在归纳BCI-EEG-matlab的数据处理代码,作为EEG数据处理的总结,方便快速搭建处理框架的Baseline,实现自动化、模块插拔化、快速化。在执行任务时,任务脑电信息多集中于低频(原创 2022-09-23 21:34:38 · 3097 阅读 · 0 评论 -
脑电EEG代码开源分享 【2.预处理-静息态篇】
静息态脑电的:【数据预处理】预处理顺序如下: -1. 基线校正--2. 滤波--3. 去除坏导联--4. 填充坏导联--5. 剔除试次预处理最终目的是:提升采集信号质量(前提是处理后还剩数据),以结果导向,在保证样本多多的情况下,尽量改善数据好好的。本文档旨在归纳BCI-EEG-matlab的数据处理代码,作为EEG数据处理的总结,方便快速搭建处理框架的Baseline,实现自动化、模块插拔化、快速化。本文以任务态(锁时刺激,如快速序列视觉呈现)为例,分享脑电EEG的分析处理方法。原创 2022-09-23 13:56:09 · 6301 阅读 · 6 评论 -
脑电EEG代码开源分享 【1.前置准备-任务态篇】
本文以任务态(锁时刺激,如快速序列视觉呈现)为例,分享脑电EEG的分析处理方法。本文档旨在归纳BCI-EEG-matlab的数据处理代码,作为EEG数据处理的总结,方便快速搭建处理框架的Baseline,实现自动化、模块插拔化、快速化。前置准备是数据处理的敲门砖,本文仅进行了基础的处理。前置准备的主要功能,分为以下4部分:1. 降采样2. 数据分段3. 去暂态4. 选择导联。提示:以下为各功能代码详细介绍,若节约阅读时间,请下滑至文末的整合代码前置准备。原创 2022-09-22 23:06:48 · 3462 阅读 · 7 评论 -
脑电EEG代码开源分享 【1.前置准备-静息态篇】
本文档旨在归纳BCI-EEG-matlab的数据处理代码,作为EEG数据处理的总结,方便快速搭建处理框架的Baseline,实现自动化、模块插拔化、快速化。本文以非锁时任务(无锁时刺激,如静息态、运动想象)为例,分享脑电EEG的前置准备方法。前置准备是数据处理的敲门砖,前置准备的主要功能,分为以下4部分:1. 降采样2. 数据分段3. 去暂态4. 选择导联提示:以下为各功能代码详细介绍,若节约阅读时间,请下滑至文末的整合代码。原创 2022-09-22 22:33:57 · 9111 阅读 · 67 评论