MATLAB基础笔记5 方程求根

MATLAB笔记5 方程求根

符号求根

  • 符号声明
>> syms x
x + x + x
(x + x + x)/4
 
ans =
 
3*x

 
ans =
 
(3*x)/4

或者

x=sym('x');
x + x + x
(x + x + x)/4

可以看出syms更为简洁

  • solve() 求方程根
    求该方程的根:𝑦 = 𝑥 ∙ sin(𝑥) − 𝑥 = 0
syms x
solve('x*sin(x)-x', x)
% MATLAB新版本不能加单引号:
solve(x*sin(x)-x, x)

ans =
 
    0
 pi/2
>> syms x
y = x*sin(x)-x;
solve(y, x)
 
ans =
 
    0
 pi/2

解方程组:
𝑥 − 2𝑦 = 5
𝑥 + 𝑦 = 6

syms x y
eq1 = x - 2*y - 5;
eq2 = x + y - 6;
A = solve(eq1,eq2,x,y)

A = 

  包含以下字段的 struct:

    x: [1×1 sym]
    y: [1×1 sym]

>> A.x  %通过该结构体获得x,y
 
ans =
 
17/3
 
>> A.y
 
ans =
 
1/3
  • 用solve()解带参数的方程
    解 𝑎𝑥2 − 𝑏 = 0 其中a,b为未知参数
syms x a b
solve(a*x^2-b)

ans =
 
  b^(1/2)/a^(1/2)
 -b^(1/2)/a^(1/2)

这里 x为首选要求的变量值

指定要解的变量:

>> syms x a b
solve(a*x^2-b,x)
 
ans =
 
  b^(1/2)/a^(1/2)
 -b^(1/2)/a^(1/2)
>> syms x a b
solve(a*x^2-b,b)
 
ans =
 
a*x^2

用 diff() 和符号求导数

求导:𝑦 = 4𝑥^5

syms x
y = 4*x^5;
yprime = diff(y)

yprime =
 
20*x^4

用 int() 和符号求积分

求 ∫𝑥^2 𝑒^𝑥 𝑑𝑥 -------------- 条件𝑧(0) = 0

syms x; 
y = x^2*exp(x);
z = int(y); 
z = z-subs(z, x, 0)

subs(z, x, 0) 是把z中的x替换为0,即将x=0带入z求解积分结果的常数,满足条件𝑧(0) = 0


fsolve()

求根 𝑓(𝑥)= 1.2𝑥 + 0.3 + 𝑥 ∙ sin(𝑥)

f2 = @(x) (1.2*x+0.3+x*sin(x));
fsolve(f2,0)

ans =

   -0.3500

第二个参数0设定初值x0,一般设定在解附近,若不知道解,也可随意设置,这个例子设为0,1,2都可以,3以上的整数会找不到解


fzero()

该函数使用条件是函数有穿过x轴!

以下要求的函数没有达到该条件,故解为NaN

>> f=@(x)x.^2
fzero(f,0.1)

f =

  包含以下值的 function_handle:

    @(x)x.^2

正在退出 fzero: 将终止搜索包含符号变化的区间
 因为在搜索期间遇到 NaN 或 Inf 函数值。
(-1.37296e+154 处的函数值为 Inf。)
请检查函数或使用其他起始值重试。

ans =

   NaN

使用fsolve:

>> fsolve(f,0)

Equation solved at initial point.

fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.

<stopping criteria details>

ans =

     0

增加option参数

f=@(x)x.^2
options=optimset('MaxIter',1e3,'TolFun',1e-10);
fsolve(f,0.1,options)
fzero(f,0.1,options)

MaxIter设置最大迭代数 Number of iterations
TolFun 设置函数容差 Tolerance


roots() 用于多项式求根

求根: 𝑓(𝑥) = 𝑥^5 − 3.5𝑥^4 + 2.75𝑥^3 + 2.125𝑥^2 − 3.875𝑥 + 1.25

>> roots([1 -3.5 2.75 2.125 -3.875 1.25])

ans =

   2.0000 + 0.0000i
  -1.0000 + 0.0000i
   1.0000 + 0.5000i
   1.0000 - 0.5000i
   0.5000 + 0.0000i

可见解都有虚数部分


递归函数 Recursive Functions

function output = fact(n)
% 递归计算n的阶乘
if n==1
output = 1;
else
output = n * fact(n-1);
end
end

  • B站教程链接
https://www.bilibili.com/video/BV1GJ41137UH

台大郭彦甫matlab教程: 点击链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值