MATLAB笔记5 方程求根
符号求根
- 符号声明
>> syms x
x + x + x
(x + x + x)/4
ans =
3*x
ans =
(3*x)/4
或者
x=sym('x');
x + x + x
(x + x + x)/4
可以看出syms更为简洁
- solve() 求方程根
求该方程的根:𝑦 = 𝑥 ∙ sin(𝑥) − 𝑥 = 0
syms x
solve('x*sin(x)-x', x)
% MATLAB新版本不能加单引号:
solve(x*sin(x)-x, x)
ans =
0
pi/2
>> syms x
y = x*sin(x)-x;
solve(y, x)
ans =
0
pi/2
解方程组:
𝑥 − 2𝑦 = 5
𝑥 + 𝑦 = 6
syms x y
eq1 = x - 2*y - 5;
eq2 = x + y - 6;
A = solve(eq1,eq2,x,y)
A =
包含以下字段的 struct:
x: [1×1 sym]
y: [1×1 sym]
>> A.x %通过该结构体获得x,y
ans =
17/3
>> A.y
ans =
1/3
- 用solve()解带参数的方程
解 𝑎𝑥2 − 𝑏 = 0 其中a,b为未知参数
syms x a b
solve(a*x^2-b)
ans =
b^(1/2)/a^(1/2)
-b^(1/2)/a^(1/2)
这里 x为首选要求的变量值
指定要解的变量:
>> syms x a b
solve(a*x^2-b,x)
ans =
b^(1/2)/a^(1/2)
-b^(1/2)/a^(1/2)
>> syms x a b
solve(a*x^2-b,b)
ans =
a*x^2
用 diff() 和符号求导数
求导:𝑦 = 4𝑥^5
syms x
y = 4*x^5;
yprime = diff(y)
yprime =
20*x^4
用 int() 和符号求积分
求 ∫𝑥^2 𝑒^𝑥 𝑑𝑥 -------------- 条件𝑧(0) = 0
syms x;
y = x^2*exp(x);
z = int(y);
z = z-subs(z, x, 0)
subs(z, x, 0) 是把z中的x替换为0,即将x=0带入z求解积分结果的常数,满足条件𝑧(0) = 0
fsolve()
求根 𝑓(𝑥)= 1.2𝑥 + 0.3 + 𝑥 ∙ sin(𝑥)
f2 = @(x) (1.2*x+0.3+x*sin(x));
fsolve(f2,0)
ans =
-0.3500
第二个参数0设定初值x0,一般设定在解附近,若不知道解,也可随意设置,这个例子设为0,1,2都可以,3以上的整数会找不到解
fzero()
该函数使用条件是函数有穿过x轴!
以下要求的函数没有达到该条件,故解为NaN
>> f=@(x)x.^2
fzero(f,0.1)
f =
包含以下值的 function_handle:
@(x)x.^2
正在退出 fzero: 将终止搜索包含符号变化的区间
因为在搜索期间遇到 NaN 或 Inf 函数值。
(-1.37296e+154 处的函数值为 Inf。)
请检查函数或使用其他起始值重试。
ans =
NaN
使用fsolve:
>> fsolve(f,0)
Equation solved at initial point.
fsolve completed because the vector of function values at the initial point
is near zero as measured by the value of the function tolerance, and
the problem appears regular as measured by the gradient.
<stopping criteria details>
ans =
0
增加option参数
f=@(x)x.^2
options=optimset('MaxIter',1e3,'TolFun',1e-10);
fsolve(f,0.1,options)
fzero(f,0.1,options)
MaxIter设置最大迭代数 Number of iterations
TolFun 设置函数容差 Tolerance
roots() 用于多项式求根
求根: 𝑓(𝑥) = 𝑥^5 − 3.5𝑥^4 + 2.75𝑥^3 + 2.125𝑥^2 − 3.875𝑥 + 1.25
>> roots([1 -3.5 2.75 2.125 -3.875 1.25])
ans =
2.0000 + 0.0000i
-1.0000 + 0.0000i
1.0000 + 0.5000i
1.0000 - 0.5000i
0.5000 + 0.0000i
可见解都有虚数部分
递归函数 Recursive Functions
function output = fact(n)
% 递归计算n的阶乘
if n==1
output = 1;
else
output = n * fact(n-1);
end
end
- B站教程链接
https://www.bilibili.com/video/BV1GJ41137UH
台大郭彦甫matlab教程: 点击链接