作者:高二蛋
来源:恒生LIGHT云社区
随着抖音、快手等短视频平台的兴起,流式计算进入了大家的视线,各大公司使用流式计算根据用户的行为偏好,在短时间内反映在推荐模型中,推荐模型再以低延迟的捕捉用户的行为偏好,从而提供更精准、及时的推荐,这也就是我们刷抖音停不下来的原因;接下来就给大家介绍一下流式数据的前世今生:
第一种:
特点:实时性好,但是海量数据的时候,高并发就不行了;
第二种:
特点: 高并发实现了,但是低延迟做不到
第三种:(最初第一代流式处理的架构)
- 特点: 把当前计算处理过程当中,所需要的哪些东西,不要去关系型数据库里查了,直接把它存到本地状态就行了;
- 缺点: 无法满足处理数据的有序性;