LeetCode 33. 搜索旋转排序数组:二分查找的边界艺术

问题描述

在旋转后的有序数组中搜索目标值。假设数组原本按升序排列,但在某个未知下标处进行了旋转(例如 [0,1,2,4,5,6,7] 旋转后可能变为 [4,5,6,7,0,1,2])。要求时间复杂度为 O(log n)

示例:

输入:nums = [4,5,6,7,0,1,2], target = 0  
输出:4  
解释:目标值 0 位于旋转后的右半部分。

解决思路

旋转后的数组可视为两个有序子数组的组合。利用 二分查找 的关键在于判断哪一部分是有序的,并检查目标值是否在该范围内。核心步骤如下:

  1. 判断有序区间:通过比较 nums[left]nums[mid],确定左半或右半是否有序。
  2. 缩小搜索范围:根据目标值是否在有序区间内,调整左右指针。

代码实现

class Solution {
    public int search(int[] nums, int target) {
        int left = 0, right = nums.length - 1;
        while (left <= right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] == target) return mid; // 直接命中
            
            // 判断左半部分是否有序
            if (nums[left] <= nums[mid]) { 
                // 目标值在左半有序区间内
                if (target >= nums[left] && target < nums[mid]) {
                    right = mid - 1;
                } else {
                    left = mid + 1;
                }
            } else { // 右半部分有序
                // 目标值在右半有序区间内
                if (target > nums[mid] && target <= nums[right]) {
                    left = mid + 1;
                } else {
                    right = mid - 1;
                }
            }
        }
        return -1;
    }
}

关键点解析

1. 为什么用 nums[left] <= nums[mid]

  • 判断有序区间
    nums[left] <= nums[mid],说明左半部分 [left, mid] 是有序的(未包含旋转点)。否则右半部分有序。
  • 边界处理
    left == mid 时(例如数组长度为 1),nums[left] == nums[mid],等号确保这种情况被正确归类为“左半有序”。

2. 示例分析

案例 1:数组 [3, 1],目标值 1
  • left = 0, mid = 0,满足 nums[left] <= nums[mid](3 ≤ 3)。
  • 目标值不在左半部分(1 < 3 不成立),调整 left = mid + 1,最终找到目标值。
案例 2:数组 [5],目标值 5
  • 若去掉等号,条件 nums[left] < nums[mid] 不成立,程序误判右半有序。
  • 检查右半部分时,target > nums[mid] 不成立,错误调整 right = mid - 1,导致返回 -1

边界条件处理

1. 单元素数组

nums.length == 1 时,left == mid == right,必须通过等号确保逻辑正确。

2. 完全有序数组

若数组未旋转(例如 [1,2,3,4,5]),逻辑仍能正确判断左半有序。

3. 严格递增与重复值

题目假设元素唯一,无需处理重复值。若存在重复值需调整条件(如 nums[left] < nums[mid])。


常见疑问

Q:为什么不能使用 nums[left] < nums[mid]

  • 边界问题:当 left == mid 时,条件不成立,导致误判右半有序。
  • 错误示例
    数组 [5],目标值 5。若用 <,程序错误调整 right = mid - 1,最终返回 -1

总结

  1. 核心逻辑:通过 nums[left] <= nums[mid] 判断有序区间,结合目标值范围调整指针。
  2. 边界条件:等号处理 left == mid 的临界情况,确保单元素区间被正确识别。
  3. 时间复杂度:O(log n),每次循环将搜索范围减半。

关键启示:二分查找的难点不仅在于算法框架,更在于对边界条件的精准处理。理解每一行代码背后的意图,才能避免“差之毫厘,谬以千里”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

进击的小白菜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值