人工智能与机器学习
文章平均质量分 89
人工智能与机器学习
君琴
小萌新的成长~
展开
-
Python-借助anaconda安装openpose 人体姿态模型
预先安装好anaconda。下载tf-pose-estimation-master:https://github.com/ildoonet/tf-pose-estimation进入cmd,创建一个新的python3.7的虚拟环境。env_name是要创建的虚拟环境的名字,x.x是python的版本。我创建的虚拟环境命名为python37conda create --name env_name python=x.x激活虚拟环境activate python37安装tensorflowcon原创 2021-11-09 17:43:55 · 4190 阅读 · 1 评论 -
Python-人脸识别检测是否佩戴口罩 使用口罩数据集
本博客运行环境为jupyter下python3.6完成对口罩佩戴与否的模型训练,采取合适的特征提取方法,输出模型训练精度和测试精度(F1-score和ROC);完成一个摄像头采集自己人脸、并能实时分类判读(输出分类文字)的程序。环境搭建可参看上一篇博客:https://blog.csdn.net/weixin_44436677/article/details/107171190图片预处理把数据集中的图片人脸部分裁剪下来。记得修改路径为自己的路径哦。import dlib # 人脸识原创 2020-07-08 22:59:47 · 6644 阅读 · 10 评论 -
Python-人脸识别并判断表情 笑脸或非笑脸 使用笑脸数据集genki4k
1.理解人脸图像特征提取的各种方法(至少包括HoG、Dlib和卷积神经网络特征);2. 掌握笑脸数据集(genki4k)正负样本的划分、模型训练和测试的过程(至少包括SVM、CNN),输出模型训练精度和测试精度(F1-score和ROC);3. 完成一个摄像头采集自己人脸、并对表情(笑脸和非笑脸)的实时分类判读(输出分类文字)的程序;4. 将笑脸数据集换成口罩数据集,完成对口罩佩戴与否的模型训练,采取合适的特征提取方法,重新做上述2-3部。环境搭建必需环境pip install tensorflow=原创 2020-07-08 22:02:45 · 7862 阅读 · 21 评论 -
人脸识别特征提取的三种方法-HoG、Dlib、卷积神经网络特征
人脸图像特征提取的各种方法(包括HoG、Dlib和卷积神经网络特征)1. HOG提取人脸图像特征用于行人检测的 HOG 特征描述子,是基于 64×128 大小的图像。但图像可能是任何尺寸的,对于这些之后用于分析的图像,唯一需要进行的处理是调整纵横比图像大小。例如需要调整纵横比为1:2,图像可以被调整为 100×200, 128×256, 或者 1000×2000,比如原始图像大小是 720×475,我们截切出来 100×200 大小图像用来计算 HOG 特征描述子,然后重新调整大小到 64×128。为原创 2020-07-08 13:11:33 · 20271 阅读 · 0 评论 -
python- yolo-v4的 环境配置 与 demo编译运行车辆识别
环境配置下载yolo-v4git clone https://github.com/AlexeyAB/darknet.git进入darknet目录cd ~/darknet编译一下make测试一下编译成功了吗 ./darknet编译成功如图:下载keras-yolo4包git clone https://github.com/Ma-Dan/keras-yolo4...原创 2020-07-06 21:05:00 · 2152 阅读 · 0 评论 -
Python-猫狗数据集两阶段分类 原始数据直接训练;数据增强后训练
import keraskeras.__version__Using TensorFlow backend.'2.3.1'5.2 - Using convnets with small datasetsThis notebook contains the code sample found in Chapter 5, Section 2 of Deep Learning with Python. Note that the original text features far more co原创 2020-06-10 22:17:51 · 1617 阅读 · 0 评论 -
Python-支持向量机 决策边界 最大化margin、使用多项式特征和核函数、高斯核函数、超参数 γ、SVM解决回归问题
本博客运行环境为Jupyter Notebook-Python3。目录支持向量机(Support Vector Machine)决策边界最大化marginSoft Margin SVM使用多项式特征和核函数数据处理分类核函数RBF核函数(高斯核函数)超参数 γSVM解决回归问题支持向量机(Support Vector Machine)支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(ge原创 2020-05-25 15:27:09 · 6017 阅读 · 0 评论 -
Python-鸢尾花数据集/月亮数据集的线性LDA、k-means和SVM算法二分类可视化分析
本博客是Jupyter Notebook的python3环境下运行的。具体内容是对鸢尾花数据集和月亮数据集,分别采用线性LDA、k-means和SVM算法进行二分类可视化分析。简述SVM算法的优点。目录线性判别分析LDA鸢尾花数据集月亮数据集SVM(支持向量机)算法支持向量机(SVM)的优点鸢尾花数据集月亮数据集k-means聚类分析鸢尾花数据集月亮数据集线性判别分析LDALDA是一种有监督的数据降维方法。LDA在进行数据降维的时候是利用数据的类别标签提供的信息的。将带有标签的数据降维,投影到低维原创 2020-05-19 12:01:24 · 2138 阅读 · 0 评论 -
Python-鸢尾花数据集Iris 数据可视化 :读取数据、显示数据、描述性统计、散点图、直方图、KDE图、箱线图
本博客运行环境为Jupyter Notebook、Python3。使用的数据集是鸢尾花数据集(Iris)。主要叙述的是数据可视化。IRIS数据集以鸢尾花的特征作为数据来源,数据集包含150个数据集,有4维,分为3 类,每类50个数据,每个数据包含4个属性,是在数据挖掘、数据分类中常用的测试集、训练集。读取数据包括sklearn库引入和读取.csv文件保存的数据集。显示数据包括显示具体数据、查...原创 2020-05-06 19:54:24 · 71367 阅读 · 16 评论 -
Python-线性判别分析(Fisher判别分析)使用鸢尾花数据集 Iris
本博客运行环境为Jupyter Notebook、Python3。使用的数据集是鸢尾花数据集。目录线性判别分析代码实现线性判别分析线性判别分析(Linear Discriminant Analysis,简称LDA)是一种经典的线性学习方法,在二分类问题.上因为最早由[Fisher, 1936]提出,亦称“Fisher判别分析”。LDA的基本思想:给定训练样例集,设法将样例投影到一条直线上,...原创 2020-05-06 17:34:15 · 9229 阅读 · 4 评论 -
分类器MNIST交叉验证准确率、混淆矩阵、精度和召回率(PR曲线)、ROC曲线、多类别分类器、多标签分类、多输出分类
本博客是在Jupyter Notebook下进行的编译。MNISTMNIST数据集,这是一组由美国高中生和人口调查局员工手写的70000个数字的图片。每张图像都用其代表的数字标记。这个数据集被广为使用,因此也被称作是机器学习领域的“Hello World”。首先,我们使用sklearn的函数来获取MNIST数据集,代码如下:# 使用sklearn的函数来获取MNIST数据集from sk...原创 2020-04-25 21:48:16 · 8609 阅读 · 2 评论 -
计算几何是什么、凸集是什么、超平面是什么、凸函数定义与判别、凸规划定义与判别
1、计算几何是什么?计算几何研究的对象是几何图形。对于图像的研究一般都是先建立坐标系,把图形转换成函数,然后用插值和逼近的数学方法,特别是用样条函数作为工具来分析图形。然而这些方法过多地依赖于坐标系的选取,缺乏几何不变性,特别是用来解决某些大挠度曲线及曲线的奇异点等问题时,有一定的局限性。2、计算几何理论中过两点的一条直线的表达式是如何描述的?在任意维度中,由两点P0、P1定义的直线参数方...原创 2020-04-22 22:36:53 · 4050 阅读 · 0 评论 -
拉格朗日乘数法及python实现拉格朗日乘数法
拉格朗日乘数法(Lagrange Multiplier Method)基本思想作为一种优化算法,拉格朗日乘子法主要用于解决约束优化问题,它的基本思想就是通过引入拉格朗日乘子来将含有n个变量和k个约束条件的约束优化问题转化为含有(n+k)个变量的无约束优化问题。拉格朗日乘子背后的数学意义是其为约束方程梯度线性组合中每个向量的系数。如何将一个含有n个变量和k个约束条件的约束优化问题转化为含有(n+...原创 2020-04-20 15:00:08 · 7638 阅读 · 1 评论 -
Python-单纯形法(大M法)求解 直接求解、借助scipy包
目录1、直接算法2、借助scipy库在线性规划问题的约束条件中加人工变量后,要求在目标函数中相应地添加认为的M或一M为系数的项。在极大化问题中,对人工变量赋于一M作为其系数;在极小化问题中,对人工变量赋于一个M作为其系数,M为一任意大(而非无穷大)的正数。把M看作一个代数符号参与运算,是单纯形法求解的一种。详细算法可参看小编的另一篇博客,Excel-单纯形法(大M法)求解 直接求解与规划求解功...原创 2020-04-20 01:13:24 · 1859 阅读 · 1 评论 -
Excel-单纯形法(大M法)求解 直接求解与规划求解功能
单纯形法线性规划的标准形式为:max CX其中,B >= 0,矩阵C、X、A、B的阶分别为 1 * n、 n * 1 、m * n 、m * 1 。单纯形的一般形式如表1所示:其中, E≥0,(D E)是由(1)式中(A B)经初等行变换所得,(D E)中有m-r(A)行全为0(否则,(1)式没有可行解;通常,删除单纯形中全为0的行),D中基变量所在列组成r(A)阶单位子矩阵,这...原创 2020-04-20 00:47:45 · 9275 阅读 · 0 评论 -
Excel-一元线性回归和多元线性回归(借助数据分析功能和直接计算)
一元线性回归 1、女士的身高-体重例子。--借助excel数据分析功能2、气温-冰红茶销售量例子。--直接计算多元线性回归3、薪资-性别-年龄-教育程度例子。--借助excel数据分析功能 4、店铺营业额-店铺面积-离车站距离例子。--直接计算原创 2020-04-13 22:41:24 · 34265 阅读 · 3 评论 -
Python-梯度下降法(最速下降法)求解多元函数
梯度下降法的计算过程就是沿梯度下降的方向求解极小值。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降法是最常采用的方法之一。多元函数的图像显示方程为z=x1 ^2 + 2 * x2 ^2 - 4 * x1- 2 * x1 * x2import numpy as npimport matplotlib.pyplot as pltimport matplotlib as mpl...原创 2020-04-05 10:15:56 · 5144 阅读 · 0 评论 -
Python-多元线性回归方程比较最小二乘法与梯度下降法
最小二乘法是先将方程自变量与因变量化为系数矩阵X,再求该矩阵的转置矩阵(X1),接着求矩阵X与他的转置矩阵的X1的乘积(X2),然后求X2的逆矩阵。最后整合为系数矩阵W,求解后分别对应截距b、a1、和a2。可见计算一个矩阵的逆是相当耗费时间且复杂的,而且求逆也会存在数值不稳定的情况。梯度下降法迭代的次数可能会比较多,但是相对来说计算量并不是很大。且其有收敛性保证。故在大数据量的时候,使用梯度下降...原创 2020-04-05 10:39:31 · 1843 阅读 · 1 评论