关于深度学习与机器学习的一些理解

1.Gradient Bossting与残差模块

首先解释一下梯度提升(Gradient Bossting)算法:

1.梯度下降法:

用泰勒公式表示损失函数,用更数学的方式解释梯度下降法:
在这里插入图片描述
这里多说一点,我为什么要用泰勒公式推导梯度下降法,是因为我们在面试中经常会被问到GBDT与XGBoost的区别和联系?其中一个重要的回答就是:GBDT在模型训练时只使用了代价函数的一阶导数信息,XGBoost对代价函数进行二阶泰勒展开,可以同时使用一阶和二阶导数。当然,GBDT和XGBoost还有许多其它的区别与联系,感兴趣的同学可以自己查阅一些相关的资料。

2.梯度提升原理推导

在这里插入图片描述

在这里插入图片描述在这里插入图片描述
此处具体推导来源于:Microstrong0305

也因此梯度提升算法为:
在这里插入图片描述
而相应的在深度学习中残差模块也是通过引入上层输出以作为f(x) ,而由于神经网络能通过梯度下降法进行参数的优化,因而残差块的思想与梯度提升的思想不谋而合(其目的也大致一样)。

ps:仅限于个人理解,仅供参考,欢迎交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值