题目描述:
堆排序是一种利用堆结构进行排序的方法,它只需要一个记录大小的辅助空间,每个待排序的记录仅需要占用一个存储空间。
首先建立小根堆或大根堆,然后通过利用堆的性质即堆顶的元素是最小或最大值,从而依次得出每一个元素的位置。
堆排序的算法可以描述如下:
在本题中,读入一串整数,将其使用以上描述的堆排序的方法从小到大排序,并输出。
输入:
输入的第一行包含1个正整数n,表示共有n个整数需要参与排序。其中n不超过100000。
第二行包含n个用空格隔开的正整数,表示n个需要排序的整数。
输出:
只有1行,包含n个整数,表示从小到大排序完毕的所有整数。
请在每个整数后输出一个空格,并请注意行尾输出换行。
样例输入:
10
2 8 4 6 1 10 7 3 5 9
样例输出:
1 2 3 4 5 6 7 8 9 10
参考代码:
#include<bits/stdc++.h>
using namespace std;
//交换
void swap(int &a,int &b){
int temp=a;
a=b;
b=temp;
}
//将以k为根的子树调整为大根堆
void HeadAdjust(int A[],int k,int len){
A[0]=A[k];//A[0]暂存子树的根结点
for(int i=2*k;i<=len;i*=2){//沿key较大的子结点向下筛选
if(i<len&&A[i]<A[i+1])
i++;//取key较大的子结点的下标
if(A[0]>=A[i]) break;//筛选结束
else{
A[k]=A[i];//将A[i]调整到双亲结点上
k=i;//修改k值,以便继续向下筛选
}
}
A[k]=A[0];//被筛选结点的值放入最终位置
}
//建立大根堆
void BuildMaxHeap(int A[],int len){
for(int i=len/2;i>0;i--)
HeadAdjust(A,i,len);
}
//堆排序的完整逻辑
void HeapSort(int A[],int len){
BuildMaxHeap(A,len);//初始建堆
for(int i=len;i>1;i--){//n-1趟的交换和建堆过程
swap(A[i],A[1]);//堆顶元素和堆底元素交换
HeadAdjust(A,1,i-1);//把剩余的待排序元素整理成堆
}
}
int main()
{
int n,A[1001],i,len;
while(cin>>n){
for(i=1;i<=n;i++)
cin>>A[i];
HeapSort(A,n);
for(int i=1;i<=n;i++)
cout<<A[i]<<" ";
}
return 0;
}