Hive计算绝对值同环比

本文介绍了绝对值同比和环比的概念,并通过具体的数据集准备及SQL计算过程,展示了如何进行这两种计算。数据集包含了日期、地区、省份和销售额等信息,通过窗口函数进行滞后值获取,进而计算同比和环比百分比变化。示例中展示了如何利用SQL进行数据处理和计算,为数据分析工作提供了实用的方法。
摘要由CSDN通过智能技术生成

目录

  1. 什么是绝对值同比

  2. 什么是绝对值环比

  3. 数据集准备

  4. 同比计算

  5. 环比计算

 

图片

什么是绝对值同比

本期数据-同期数据/|同期数据|
例: 2021年1月1日的gmv -2020年1月1日的gmv/|2020年1月1日的gmv|

什么是绝对值环比

本期数据-上期数据/|上期数据|
例: 2021年2月2日的gmv -2020年2月1日的gmv/|2020年2月1日的gmv|

数据集准备

建表语句

create table new_table(
dt string,
area string,
province string,
saleroom int
);

 

数据准备

insert into new_table values('2017-12-01', 'hd', 'sh','3600000');
insert into new_table values('2017-12-02', 'hd', 'js','2800000');
insert into new_table values('2017-12-03', 'hd', 'zj','4500000');
insert into new_table values('2017-12-04', 'hb', 'bj','3000000');
insert into new_table values('2017-12-05', 'hb', 'tj','2800000');
insert into new_table values('2018-12-01', 'hd', 'sh','3000000');
insert into new_table values('2018-12-02', 'hd', 'js','2000000');
insert into new_table values('2018-12-03', 'hd', 'zj','2500000');
insert into new_table values('2018-12-04', 'hb', 'bj','2600000');
insert into new_table values('2018-12-05', 'hb', 'tj','1500000');

 

同比计算​​​​​​​

with tmp as (
select 
dt,
area,
province,
saleroom,
lag(saleroom,1,0) over(partition by concat(month(dt),"-",day(dt)),area,province order by dt asc) pre_sale
from new_table)
select 
dt,area,province,saleroom,pre_sale,
if(round((saleroom-pre_sale)/abs(pre_sale)*1.00,2) is null,100,round((saleroom-pre_sale)/abs(pre_sale)*1.00,2)*100) 
from tmp;12

 

环比计算​​​​​​​

with tmp as (
select 
dt,
area,
province,
saleroom,
lag(saleroom,1,0) over(partition by concat(month(dt),"-",day(dt)),area,province order by dt asc) pre_sale
from new_table)
select 
dt,area,province,saleroom,pre_sale,
if(round((saleroom-pre_sale)/abs(pre_sale)*1.00,2) is null,100,round((saleroom-pre_sale)/abs(pre_sale)*1.00,2)*100) 
from tmp ;

​​​​​​​

 

一、关系运算: 4 1. 等值比较: = 4 2. 不等值比较: 4 3. 小于比较: < 4 4. 小于等于比较: 5 6. 大于等于比较: >= 5 7. 空值判断: IS NULL 5 8. 非空判断: IS NOT NULL 6 9. LIKE比较: LIKE 6 10. JAVA的LIKE操作: RLIKE 6 11. REGEXP操作: REGEXP 7 二、数学运算: 7 1. 加法操作: + 7 2. 减法操作: - 7 3. 乘法操作: * 8 4. 除法操作: / 8 5. 取余操作: % 8 6. 位与操作: & 9 7. 位或操作: | 9 8. 位异或操作: ^ 9 9.位取反操作: ~ 10 三、逻辑运算: 10 1. 逻辑与操作: AND 10 2. 逻辑或操作: OR 10 3. 逻辑非操作: NOT 10 四、数值计算 11 1. 取整函数: round 11 2. 指定精度取整函数: round 11 3. 向下取整函数: floor 11 4. 向上取整函数: ceil 12 5. 向上取整函数: ceiling 12 6. 取随机数函数: rand 12 7. 自然指数函数: exp 13 8. 以10为底对数函数: log10 13 9. 以2为底对数函数: log2 13 10. 对数函数: log 13 11. 幂运算函数: pow 14 12. 幂运算函数: power 14 13. 开平方函数: sqrt 14 14. 二进制函数: bin 14 15. 十六进制函数: hex 15 16. 反转十六进制函数: unhex 15 17. 进制转换函数: conv 15 18. 绝对值函数: abs 16 19. 正取余函数: pmod 16 20. 正弦函数: sin 16 21. 反正弦函数: asin 16 22. 余弦函数: cos 17 23. 反余弦函数: acos 17 24. positive函数: positive 17 25. negative函数: negative 17 五、日期函数 18 1. UNIX时间戳转日期函数: from_unixtime 18 2. 获取当前UNIX时间戳函数: unix_timestamp 18 3. 日期转UNIX时间戳函数: unix_timestamp 18 4. 指定格式日期转UNIX时间戳函数: unix_timestamp 18 5. 日期时间转日期函数: to_date 19 6. 日期转年函数: year 19 7. 日期转月函数: month 19 8. 日期转天函数: day 19 9. 日期转小时函数: hour 20 10. 日期转分钟函数: minute 20 11. 日期转秒函数: second 20 12. 日期转周函数: weekofyear 20 13. 日期比较函数: datediff 21 14. 日期增加函数: date_add 21 15. 日期减少函数: date_sub 21 六、条件函数 21 1. If函数: if 21 2. 非空查找函数: COALESCE 22 3. 条件判断函数:CASE 22 4. 条件判断函数:CASE 22 七、字符串函数 23 1. 字符串长度函数:length 23 2. 字符串反转函数:reverse 23 3. 字符串连接函数:concat 23 4. 带分隔符字符串连接函数:concat_ws 23 5. 字符串截取函数:substr,substring 24 6. 字符串截取函数:substr,substring 24 7. 字符串转大写函数:upper,ucase 24 8. 字符串转小写函数:lower,lcase 25 9. 去空格函数:trim 25 10. 左边去空格函数:ltrim 25 11. 右边去空格函数:rtrim 25 12. 正则表达式替换函数:regexp_replace 26 13. 正则表达式解析函数:regexp_extract 26 14. URL解析函数:parse_url 26 15. json解析函数:get_json_object 27 16. 空格字符串函数:space 27 17. 重复字符串函数:repeat 27 18. 首字符ascii函数:ascii 28 19. 左补足函数:lpad 28 20. 右补足函数:rpad 28 21. 分割字符串函数: split 28 22. 集合查找函数: find_in_set 29 八、集合统计函数 29 1. 个数统计函数: count 29 2. 总和统计函数: sum 29 3. 平均值统计函数: avg 30 4. 最小值统计函数: min 30 5. 最大值统计函数: max 30 6. 非空集合总体变量函数: var_pop 30 7. 非空集合样本变量函数: var_samp 31 8. 总体标准偏离函数: stddev_pop 31 9. 样本标准偏离函数: stddev_samp 31 10.中位数函数: percentile 31 11. 中位数函数: percentile 31 12. 近似中位数函数: percentile_approx 32 13. 近似中位数函数: percentile_approx 32 14. 直方图: histogram_numeric 32 九、复合类型构建操作 32 1. Map类型构建: map 32 2. Struct类型构建: struct 33 3. array类型构建: array 33 十、复杂类型访问操作 33 1. array类型访问: A[n] 33 2. map类型访问: M[key] 34 3. struct类型访问: S.x 34 十一、复杂类型长度统计函数 34 1. Map类型长度函数: size(Map) 34 2. array类型长度函数: size(Array) 34 3. 类型转换函数 35
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值