MobaXterm链接服务器+anaconda3安装+python3.8环境配置+TensorFlow2.4+python库的安装(简单)

关于单幅图像无雨问题。找到了2017年IE文章《Removing rain from single images via a deep detail network》文章,源代码,数据集在github上:https://xueyangfu.github.io/projects/cvpr2017.html
想要复现一下代码,老师给配置了一个服务器,在上面跑数据。
cuda11.1,cudnn8.4(这俩服务器已经装好了,我就没装),python3.8,TensorFlow2.4
文章是用的TensorFlow1.x的版本,改到TensorFlow2.x的版本运行的

用MobaXterm链接服务器

去该网址下载:MobaXterm下载
直接参考该文章就可以,完全没问题

服务器中anaconda3安装

之后的环境都是anaconda安装的,先来在服务器配置anaconda3

下载anaconda3安装包

anaconda3下载链接下载对应的版本,我下载的是这个:
在这里插入图片描述
下载到电脑上,将包直接拖到MobaXterm里面就可以,他就自己上传
在这里

输入:bash Anaconda3-2021.11-Linux-x86_64.sh
遇到一堆问题输入Q或者回车enter
遇到[y/n]输入y

我没有遇到其他问题,可以参考其他文章例如这个文章

python3.8+TensorFlow2.4环境配置

需要看自己的cuda版本和哪一个python和TensorFlow对应

因为我是cuda11.1。没有对应的版本,就往下找(可以适当向下兼容)cuda11.0对应的版本–(python3.6-3.8,tensorflow2.4.0)
在这里插入图片描述

可能会更新,找不到对应版本的去官网找:官网链接

创建一个虚拟环境

conda info -e (查看所有的虚拟环境)
conda create -n tensorflow2.4 python=3.8 (创建一个环境,环境名称为tensorflow2.4,是基于python3.8的,他就会安装一些python的包,在/anaconda3/envs/下面就会有一个TensorFlow2.4的文件)
在这里插入图片描述
conda activate tensorflow2.4(虚拟环境名字为tensorflow2.4)(进入到该虚拟环境中)

退出环境
conda deactivate

安装tensorflow等一些python库

例如matplotlib、tensorflow
进入虚拟环境后,直接pip install tensorflow就可以

看看有没有装好TensorFlow

CUDA、cuDNN、tensorflow三者对应之后

python 
import tensorflow as tf
tf.test.is_gpu_available()

输出:

True  #成功

有的输出时False,可以参考这个文章tensorflow GPU测试tf.test.is_gpu_avaiable()返回false解决方法

运行python文件

conda activate tensorflow2.4(激活环境)
cd /home/code/(python文件存放位置)
python training.py(运行python文件)

参考文章:
MobaXterm连接服务器
MobaXterm安装Anaconda-TensorFlow
tensorflow GPU测试tf.test.is_gpu_avaiable()返回false解决方法

### 在 macOS 上使用 Python 3.8Anaconda 安装 TensorFlow 的指南 #### 创建并配置 Conda 环境 为了确保兼容性和稳定性,在安装 TensorFlow 前应该先创建一个新的 conda 环境,并指定 Python 版本为 3.8。 ```bash conda create -n tf python=3.8 ``` 这一步骤可以避免与其他已有的 Python 发生冲突,同时也便于管理依赖关系[^3]。 #### 激活新创建的环境 一旦环境被成功创建,则需要将其激活以便后续操作都在此环境中执行: ```bash conda activate tf ``` 此时命令提示符前会出现 `(tf)` 字样表示当前处于名为 `tf` 的虚拟环境中。 #### 安装 TensorFlow 对于 Mac 用户来说,默认情况下可以通过 pip 来安装 TensorFlow。考虑到网络因素可能导致下载缓慢或者失败的情况,推荐采用国内源来加速这一过程: ```bash pip install tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple/ ``` 这条指令利用清华大学开源软件镜像站作为 PyPI 镜像服务器来进行 TensorFlow安装工作。 #### 测试安装是否成功 完成上述步骤之后,可通过导入 TensorFlow 并打印其版本号的方式来验证安装是否正确无误: ```python import tensorflow as tf print(tf.__version__) ``` 如果一切正常的话,这段代码将会输出所安装TensorFlow 版本信息[^2]。 #### 进阶工具 Spyder 的安装(可选) 如果有图形界面开发的需求,还可以考虑安装集成开发环境 (IDE),比如 Spyder: ```bash conda install spyder ``` Spyder 是一款非常适合科学计算和数据分析工作的 IDE,它能够很好地支持 TensorFlow 开发。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值