第08章 聚合函数
1. 聚合函数介绍
1.1 AVG和SUM函数
可以对数值型数据使用AVG 和 SUM 函数。
mysql> SELECT AVG(salary), MAX(salary),MIN(salary), SUM(salary)
-> FROM employees
-> WHERE job_id LIKE '%REP%';
+-------------+-------------+-------------+-------------+
| AVG(salary) | MAX(salary) | MIN(salary) | SUM(salary) |
+-------------+-------------+-------------+-------------+
| 8272.727273 | 11500.00 | 6000.00 | 273000.00 |
+-------------+-------------+-------------+-------------+
1.2 MIN和MAX函数
可以对任意数据类型的数据使用 MIN 和 MAX 函数。
mysql> SELECT MIN(hire_date), MAX(hire_date)
-> FROM employees;
+----------------+----------------+
| MIN(hire_date) | MAX(hire_date) |
+----------------+----------------+
| 1987-06-17 | 2000-04-21 |
+----------------+----------------+
1.3 COUNT函数
- COUNT(*)返回表中记录总数(包含为NULL值的记录),适用于任意数据类型。
mysql> SELECT COUNT(*)
-> FROM employees
-> WHERE department_id = 50;
+----------+
| COUNT(*) |
+----------+
| 45 |
+----------+
- COUNT(expr) 返回expr不为NULL的记录总数。
mysql> SELECT COUNT(commission_pct)
-> FROM employees
-> WHERE department_id = 50;
+-----------------------+
| COUNT(commission_pct) |
+-----------------------+
| 0 |
+-----------------------+
- 问题:用count(*),count(1),count(列名)谁好呢?
其实,对于MyISAM引擎的表是没有区别的。这种引擎内部有一计数器在维护着行数。
Innodb引擎的表用count(*),count(1)直接读行数,复杂度是O(n),因为innodb真的要去数一遍。但好于具体的count(列名)。
- 问题:能不能使用count(列名)替换count(*)?
不要使用 count(列名)来替代count(*)
,count(*)
是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。
说明:count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。
- AVG、SUM、COUNT (列名)会自动忽略NULL值 。AVG = SUM / COUNT
- MySQL中聚合函数不能嵌套
2. GROUP BY
2.1 基本使用
可以使用GROUP BY子句将表中的数据分成若干组
SELECT column, group_function(column)
FROM table
[WHERE condition]
[GROUP BY group_by_expression]
[ORDER BY column];
明确:WHERE一定放在FROM后面
在SELECT列表中所有未包含在组函数中的列都应该包含在GROUP BY子句中
SELECT department_id, AVG(salary)
FROM employees
GROUP BY department_id;
包含在 GROUP BY 子句中的列不必包含在SELECT 列表中
SELECT AVG(salary)
FROM employees
GROUP BY department_id;
2.2 使用多个列分组
SELECT department_id dept_id, job_id, SUM(salary)
FROM employees
GROUP BY department_id, job_id;
2.3 GROUP BY中使用WITH ROLLUP
使用WITH ROLLUP
关键字之后,在所有查询出的分组记录之后增加一条记录,该记录计算查询出的所有记录的总和,即统计记录数量。
SELECT department_id,AVG(salary)
FROM employees
WHERE department_id > 80
GROUP BY department_id WITH ROLLUP;
注意:
当使用ROLLUP时,不能同时使用ORDER BY子句进行结果排序,即ROLLUP和ORDER BY是互相排斥的。
3. HAVING
3.1 基本使用
SELECT department_id, MAX(salary)
FROM employees
GROUP BY department_id
HAVING MAX(salary)>10000;
- 非法使用聚合函数 : 不能在 WHERE 子句中使用聚合函数。
mysql> SELECT department_id, AVG(salary)
-> FROM employees
-> WHERE AVG(salary) > 8000
-> GROUP BY department_id;
ERROR 1111 (HY000): Invalid use of group function
结论:
当过滤条件中有聚合函数时,则此过滤条件必须声明在HAVING中。
当过滤条件中没有聚合函数时,则此过滤条件声明在WHERE中或HAVING中都可以。但是,建议大家声明在WHERE中。
3.2 WHERE和HAVING的对比
优点 | 缺点 | |
---|---|---|
WHERE | 先筛选数据再关联,执行效率高 | 不能使用分组中的计算函数进行筛选 |
HAVING | 可以使用分组中的计算函数 | 在最后的结果集中进行筛选,执行效率较低 |
4. SELECT的执行过程
4.1 查询的结构
#方式1(sql92):
SELECT ...,....,...
FROM ...,...,....
WHERE 多表的连接条件
AND 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#方式2(sql99):
SELECT ...,....,...
FROM ... JOIN ...
ON 多表的连接条件
JOIN ...
ON ...
WHERE 不包含组函数的过滤条件
AND/OR 不包含组函数的过滤条件
GROUP BY ...,...
HAVING 包含组函数的过滤条件
ORDER BY ... ASC/DESC
LIMIT ...,...
#其中:
#(1)from:从哪些表中筛选
#(2)on:关联多表查询时,去除笛卡尔积
#(3)where:从表中筛选的条件
#(4)group by:分组依据
#(5)having:在分组统计结果中再次筛选
#(6)order by:排序
#(7)limit:分页
4.2 SELECT执行顺序
你需要记住 SELECT 查询时的两个顺序:
1. 关键字的顺序是不能颠倒的:
SELECT ... FROM ... WHERE ... GROUP BY ... HAVING ... ORDER BY ... LIMIT...
2.SELECT 语句的执行顺序(在 MySQL 和 Oracle 中,SELECT 执行顺序基本相同):
#FROM ...,...-> ON -> (LEFT/RIGNT JOIN) -> WHERE -> GROUP BY -> HAVING -> SELECT(此时聚合函数针对的是每个组) -> DISTINCT -> ORDER BY -> LIMIT
SELECT DISTINCT player_id, player_name, count(*) as num # 顺序 5
FROM player JOIN team ON player.team_id = team.team_id # 顺序 1
WHERE height > 1.80 # 顺序 2
GROUP BY player.team_id # 顺序 3
HAVING num > 2 # 顺序 4
ORDER BY num DESC # 顺序 6
LIMIT 2 # 顺序 7
在 SELECT 语句执行这些步骤的时候,每个步骤都会产生一个虚拟表
,然后将这个虚拟表传入下一个步骤中作为输入。需要注意的是,这些步骤隐含在 SQL 的执行过程中,对于我们来说是不可见的。
4.3 SQL 的执行原理
SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:
-
首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1;
-
通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2;
-
添加外部行。如果我们使用的是左连接、右连接或者全连接,就会涉及到外部行,也就是在虚拟表 vt1-2 的基础上增加外部行,得到虚拟表 vt1-3。
当然如果我们操作的是两张以上的表,还会重复上面的步骤,直到所有表都被处理完为止。这个过程得到是我们的原始数据。
当我们拿到了查询数据表的原始数据,也就是最终的虚拟表vt1
,就可以在此基础上再进行WHERE
阶段 。在这个阶段中,会根据 vt1 表的结果进行筛选过滤,得到虚拟表vt2
。
然后进入第三步和第四步,也就是GROUP
和HAVING
阶段 。在这个阶段中,实际上是在虚拟表 vt2 的基础上进行分组和分组过滤,得到中间的虚拟表vt3
和vt4
。
当我们完成了条件筛选部分之后,就可以筛选表中提取的字段,也就是进入到SELECT
和DISTINCT
阶段 。
首先在 SELECT 阶段会提取想要的字段,然后在 DISTINCT 阶段过滤掉重复的行,分别得到中间的虚拟表vt5-1
和vt5-2
。
当我们提取了想要的字段数据之后,就可以按照指定的字段进行排序,也就是ORDER BY
阶段 ,得到虚拟表vt6
。
最后在 vt6 的基础上,取出指定行的记录,也就是LIMIT
阶段 ,得到最终的结果,对应的是虚拟表vt7
。
当然我们在写 SELECT 语句的时候,不一定存在所有的关键字,相应的阶段就会省略。
同时因为 SQL 是一门类似英语的结构化查询语言,所以我们在写 SELECT 语句的时候,还要注意相应的关键字顺序,所谓底层运行的原理,就是我们刚才讲到的执行顺序。