深度学习 PyTorch_Week2【任务1】数据预处理transforms模块机制

今天学习pytorch图像预处理模块——transforms

一、transforms运行机制

在下载pytorch时,我们下载两个安装包,一个是torch,一个是torchvision,torchvision是计算机视觉工具包,它有三个主要的模块。
torchvision. transforms:常用的图像预处理方法
torchvision.datasets:常用数据集的dataset实现,MNIST,CIFAR-10,ImageNet等
torchvision.model:常用的模型预训练,AlexNet, VGG,ResNet, GoogLeNet等

torchvision.transforms:常用的图像预处理方法

  • 数据中心化
  • 数据标准化
  • 缩放
  • 裁剪
  • 旋转
  • 翻转
  • 填充
  • 噪声添加
  • 灰度变换
  • 线性变换
  • 仿射变换
  • 亮度、饱和度及对比度变换

我们知道深度学习是由数据驱动的,而数据的数量以及分布对模型的优劣是起到决定性作用的。所以,我们需要对数据进行一定的预处理以及数据增强,用来提升模型的泛化能力,如下方这张图,里面有64张图片,这些图片都来自于一张图像,由这张图像经过一系列的缩放平移旋转等这些操作的组合生成。打个比方,我们高中熟悉的练习册五年高考三年模拟,其中五年高考的真实卷相当于训练数据,三年模拟相当于做一些数据增强,去丰富训练数据。加入在三年模拟的试卷当中出现了当年的高考题,恰恰你又做个过,那么我们的分数自然有所提高。同样的,如果我们做数据增强的时候,生成了一些与测试样本很相似的图片,那么我们模型的泛化能力自然就会得到提高,这就是我们做数据增强的原因。在这里插入图片描述
通过代码学习transforms运行机制,用到之前人民币二分类程序,具体调试过程略。其中transforms.Compose是将一系列transforms方法进行有序的组合、包装,在具体实现的时候,会依次的、按顺序的将这些方法对图像进行操作。
在这里插入图片描述
在流程图中加入transforms,在getitem中调用transforms,我们在getitem中读取一张图片,然后对这一张图片进行一系列预处理,然后返回我们的图片以及标签。

二、数据标准化——transforms.normalize

transforms. Normalize

功能:逐channel的对图像进行标准化(将数据的均值变为0,标准差变为1)

output = (input -mean) / std

  • mean:各通道的均值
  • std:各通道的标准差
  • inplace:是否原地操作
    在这里插入图片描述

可进行代码调试查看函数如何运行。

为什么要对数据进行标准化?因为标准化后可加快模型收敛。为理解这一过程,回顾之前逻辑回归模型的实现。通过修改逻辑回归模型的训练数据观察normalize的使用。

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import numpy as np
torch.manual_seed(10)

lr = 0.01  # 学习率

# 生成虚拟数据
sample_nums = 100
mean_value = 1.7
bias = 1         # 5
n_data = torch.ones(sample_nums, 2)
x0 = torch.normal(mean_value * n_data, 1) + bias      # 类别0 数据 shape=(100, 2)
y0 = torch.zeros(sample_nums)                         # 类别0 标签 shape=(100, 1)
x1 = torch.normal(-mean_value * n_data, 1) + bias     # 类别1 数据 shape=(100, 2)
y1 = torch.ones(sample_nums)                          # 类别1 标签 shape=(100, 1)
train_x = torch.cat((x0, x1), 0)
train_y = torch.cat((y0, y1), 0)


# 定义模型
class LR(nn.Module):
    def __init__(self):
        super(LR, self).__init__()
        self.features = nn.Linear(2, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.features(x)
        x = self.sigmoid(x)
        return x


lr_net = LR()

# 定义损失函数与优化器
loss_fn = nn.BCELoss()
optimizer = torch.optim.SGD(lr_net.parameters(), lr=0.01, momentum=0.9)

for iteration in range(1000):

    # 前向传播
    y_pred = lr_net(train_x)

    # 计算 MSE loss
    loss = loss_fn(y_pred, train_y)

    # 反向传播
    loss.backward()

    # 更新参数
    optimizer.step()

    # 清空梯度
    optimizer.zero_grad()

    # 绘图
    if iteration % 40 == 0:

        mask = y_pred.ge(0.5).float().squeeze()  # 以0.5为阈值进行分类
        correct = (mask == train_y).sum()  # 计算正确预测的样本个数
        acc = correct.item() / train_y.size(0)  # 计算精度

        plt.scatter(x0.data.numpy()[:, 0], x0.data.numpy()[:, 1], c='r', label='class 0')
        plt.scatter(x1.data.numpy()[:, 0], x1.data.numpy()[:, 1], c='b', label='class 1')

        w0, w1 = lr_net.features.weight[0]
        w0, w1 = float(w0.item()), float(w1.item())
        plot_b = float(lr_net.features.bias[0].item())
        plot_x = np.arange(-6, 6, 0.1)
        plot_y = (-w0 * plot_x - plot_b) / w1

        plt.xlim(-5, 10)
        plt.ylim(-7, 10)
        plt.plot(plot_x, plot_y)

        plt.text(-5, 5, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
        plt.title("Iteration: {}\nw0:{:.2f} w1:{:.2f} b: {:.2f} accuracy:{:.2%}".format(iteration, w0, w1, plot_b, acc))
        plt.legend()

        plt.show()
        plt.pause(0.5)

        if acc > 0.99:
            break

bias=1时结果图:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
我们发现数据的均值差不多在(0,0)附近,迭代到400次时,准确率达到99.5%,Loss值也比较低,为0.0479。

当我们修改一下数据分布,使数据均值远离我们的(0,0),即让其没有零均值的分布;将bias值改为5,即将数据向上和右都移动4个单位,再次观察迭代训练过程。

bias=5时结果:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

我们看到数据的均值大概在5这个位置,距离零点比较远,但是迭代到960次时,准确率才达到99%,没有达到99.5%,它的Loss值也比较高,为0.1488,和之前比提高了太多。

前面的数据分布比较好,几乎是一个零均值的分布,就可以很快的收敛,很快达到一个比较低的Loss值。后面的数据分布就不好,均值距离0比较远,我们的模型在初始时是一般是零均值的,现在需要模型逐渐去靠近比较远的最优分界平面,它的迭代更过程比较慢。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【课程介绍】      Pytorch项目实战 垃圾分类课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。    从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。    课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。【课程要求】 (1)开发环境:python版本:Python3.7+; torch版本:1.2.0+; torchvision版本:0.4.0+ (2)开发工具:Pycharm;(3)学员基础:需要一定的Python基础,及深度学习基础;(4)学员收货:掌握最新科技图像分类关键技术;(5)学员资料:内含完整程序源码和数据集;(6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码【课程特色】 阵容强大讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。仅跟前沿基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。实战为先根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目保障效果项目实战方向包含了学术届和工业届最前沿技术要点项目包装简历优化课程内垃圾分类图像实战项目完成后可以直接优化到简历【课程思维导图】 【课程实战案例】

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值